
Traffic re-engineering:

Extending resource pooling through the
application of re-feedback

João Taveira Araújo

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Electronic & Electrical Engineering

University College London

2014

I, João Taveira Araújo, confirm that the work presented in this thesis is my own. Where information has been

derived from other sources, I confirm that this has been indicated in the thesis.

c© 2008–2014, João Taveira Araújo

Department of Electronic & Electrical Engineering

University College London

Abstract

Parallelism pervades the Internet, yet efficiently pooling this increasing path diversity has remained

elusive. With no holistic solution for resource pooling, each layer of the Internet architecture attempts to

balance traffic according to its own needs, potentially at the expense of others. From the edges, traffic is

implicitly pooled over multiple paths by retrieving content from different sources. Within the network,

traffic is explicitly balanced across multiple links through the use of traffic engineering. This work

explores how the current architecture can be realigned to facilitate resource pooling at both network and

transport layers, where tension between stakeholders is strongest.

The central theme of this thesis is that traffic engineering can be performed more efficiently, flexibly

and robustly through the use of re-feedback. A cross-layer architecture is proposed for sharing the

responsibility for resource pooling across both hosts and network. Building on this framework, two novel

forms of traffic management are evaluated. Efficient pooling of traffic across paths is achieved through

the development of an in-network congestion balancer, which can function in the absence of multipath

transport. Network and transport mechanisms are then designed and implemented to facilitate path fail-

over, greatly improving resilience without requiring receiver side cooperation. These contributions are

framed by a longitudinal measurement study which provides evidence for many of the design choices

taken. A methodology for scalably recovering flow metrics from passive traces is developed which

in turn is systematically applied to over five years of interdomain traffic data. The resulting findings

challenge traditional assumptions on the preponderance of congestion control on resource sharing, with

over half of all traffic being constrained by limits other than network capacity.

All of the above represent concerted attempts to rethink and reassert traffic engineering in an Inter-

net where competing solutions for resource pooling proliferate. By delegating responsibilities currently

overloading the routing architecture towards hosts and re-engineering traffic management around the

core strengths of the network, the proposed architectural changes allow the tussle surrounding resource

pooling to be drawn out without compromising the scalability and evolvability of the Internet.

Acknowledgements

The work documented herein was made possible by my advisors along the way, formal or otherwise:

Manuel Ricardo and Filipe Abrantes for inadvertently setting me on this path, George Pavlou and Miguel

Rio for drafting directions which in my youth and to my chagrin I too often left unheeded, and Kensuke

Fukuda for providing me with an eventful detour.

The ensuing comedy of errors was funded by the Portuguese government and would not have been

complete without the following cast: Raúl Landa, Richard Clegg and Michio Honda as co-conspirators;

Ioannis Psaras as proofreader; Suksant Sae Lor, Lorenzo Saino and Marinos Charalambides as fellow

destitute Hackney residents; the entirety of NSRL for consistently getting me into the pub; Eleni Myko-

niati for repeatedly getting us out; Pedro Cuba, Jorge Felizardo, Kalie Howse and Edgar Santos as comic

relief. For support in absentia while my mind wandered: my parents, my family, Catarina Félix, Pedro

Ribeiro, Nuno Salta.

To my mother for persevering in making me learn English,

otherwise writing this would have taken twice as long.

French on the other hand was of no use whatsoever.

Contents

Abstract 3

Acknowledgements 4

List of Figures 10

List of Tables 11

1 Introduction 12

1.1 Problem statement . 13

1.2 Contributions . 13

1.3 Publications . 14

1.4 Thesis Outline . 15

2 Resource pooling 16

2.1 Pooling end-to-end: congestion management . 16

2.1.1 Historical precursors . 16

2.1.2 TCP congestion control . 18

2.1.3 Traffic shaping . 20

2.1.4 Explicit congestion control . 22

2.1.5 Congestion exposure . 26

2.2 Pooling across multiple paths: traffic balancing . 28

2.2.1 Traffic engineering . 28

2.2.2 Resilient routing . 31

2.2.3 Higher layer approaches . 32

2.2.4 Rethinking traffic management . 35

3 A mutualistic resource pooling architecture 37

3.1 Resolving the tussle . 38

3.2 PREFLEX . 40

3.2.1 Loss Exposure . 41

3.2.2 Path re-feedback . 42

Contents 7

3.3 Closing the loop . 44

4 Congestion aware traffic engineering 46

4.1 A model for congestion balancing . 46

4.1.1 Understanding the design space . 47

4.1.2 Balancing between conservative and loss-driven 49

4.1.3 Tuning update interval . 50

4.2 Performance Analysis . 51

4.2.1 Methodology . 51

4.2.2 Varying bottleneck distribution . 53

4.3 Conclusions . 55

5 A longitudinal analysis of transit traffic 56

5.1 Related work . 56

5.2 Dataset . 57

5.2.1 Tracing TCP Metrics . 58

5.2.2 Aggregating by Location . 59

5.3 RTT estimation . 60

5.3.1 Utility-Based RTT Recovery . 62

5.3.2 Comparing recovery algorithms . 63

5.4 Macroscopic traffic trends . 63

5.4.1 Geographic distribution . 65

5.4.2 AS-level distribution . 66

5.4.3 Delay . 68

6 TCP flow rate limitations 71

6.1 Flow classification . 72

6.1.1 Application paced . 73

6.1.2 Host limited . 74

6.1.3 Receiver shaped . 75

6.2 Revisiting assumptions . 76

6.2.1 Throughput is primarily shaped by TCP . 76

6.2.2 Throughput is primarily sender driven . 78

6.2.3 Throughput is correlated with flow size . 81

6.2.4 Throttling primarily affects heavy hitters . 82

6.3 Conclusions . 84

7 Network support for transport resilience 86

7.1 Design considerations . 86

7.1.1 Latency . 87

Contents 8

7.1.2 Deployment . 87

7.1.3 Multipath routing . 88

7.2 OpenFlow background . 89

7.3 Architecture . 91

7.3.1 INFLEX end-hosts . 92

7.3.2 The edge switch . 93

7.3.3 The inflector . 95

7.4 Analysis . 95

7.4.1 Sender-side resilience . 96

7.4.2 Receiver-side resilience . 98

7.4.3 Network overhead . 100

7.5 Unifying approaches . 101

7.5.1 Traffic management . 101

7.5.2 Congestion management . 103

7.6 Conclusions . 104

8 Conclusions 105

8.1 Summary of contributions . 106

8.1.1 Internet traffic characterisation . 106

8.1.2 Architectural contributions . 107

8.1.3 Resource pooling enhancements . 108

8.2 Future work . 108

Appendices 110

A Acronyms and Abbreviations 111

Bibliography 116

List of Figures

2.1 TCP congestion control. 19

2.2 Simplified model of re-ECN. 27

3.1 PREFLEX architecture. 43

4.1 Simulation using PREFLEX to balance traffic over two paths. 48

4.2 Simulation topology. 49

4.3 Parameters γ and τ ′ . 50

4.4 Number of requests to cross traffic servers. 52

4.5 Goodput achieved over equal capacity links. 53

4.6 Goodput achieved over unequal capacity links. 54

4.7 Mean flow completion time. 54

5.1 H(t) for example flow. 61

5.2 Accuracy of RTT estimator. 62

5.3 Longitudinal evolution of average throughput and loss for the MAWI dataset. 64

5.4 CDF of traffic by AS. 67

5.5 CDF of mean RTT by AS. 68

5.6 CDF of weighted RTT by AS. 69

5.7 Scatter plot of mean RTT by country grouped by continent. 70

6.1 Congestion window over time for application paced flow. 73

6.2 Congestion window over time for partially host limited flow. 74

6.3 Congestion window over time for receiver limited flow. 76

6.4 Longitudinal evolution of TCP window parameters. 79

6.5 Median throughput for inbound traffic by flow size. 81

6.6 CDF of the average window size by flow size by year. 82

7.1 TCP option usage. 88

7.2 CDF of traffic by announced network prefix. 89

7.3 OpenFlow architecture and flow entry structure. 90

7.4 INFLEX architecture and header. 92

7.5 INFLEX host modifications. 93

List of Figures 10

7.6 Pipeline installed to the edge switch datapath. 94

7.7 Simulation setup. 96

7.8 Congestion window for concurrent downloads towards client. 97

7.9 Congestion window for concurrent uploads from client. 98

7.10 Data packet inter-arrival time. 99

7.11 Mean flow state for outbound traffic. 100

7.12 Extending INFLEX for congestion balancing. 103

List of Tables

3.1 LEX code points and description. 42

5.1 Overview of traced MAWI dataset. 58

5.2 Performance of RTT recovery algorithms. 63

5.3 Percentage of inbound and outbound traffic by country. 66

5.4 Top 10 ASes for inbound traffic by year. 67

5.5 Top 10 ASes for outbound traffic by year. 67

6.1 Percentage of traffic bytes affected by each constraint by year. 77

6.2 AS-level analysis of throughput limiting. 78

6.3 Percentage of host limited traffic over time. 80

6.4 Percentage of traffic in bytes affected by each constraint by year according to flow size. . 83

6.5 AS-level analysis of receiver shaping. 85

Chapter 1

Introduction

Strategies for pooling traffic are locally applied by all stakeholders on the Internet in a bid to improve

efficiency, resilience and flexibility. Operators resort to traffic engineering to load balance traffic across

available network resources. Hosts adapt their sending rates to probe available network capacity. Peer-to-

peer (P2P) applications often retrieve data chunks from multiple locations in order to efficiently distribute

content amongst peers. Content providers can manipulate name resolution to balance demand across

servers and hosting infrastructure. While these mechanisms share similar goals, they do so from different

perspectives and as such may be at odds with each other.

This antagonism is played out within the Internet architecture as network, transport and application

layers all attempt to influence how and where traffic flows. Against a backdrop of significant shifts in

traffic patterns [CFEK06, CFEK08] and greater path diversity [TMSV03, BPS99, OZP+06], the issue of

how best to balance traffic across multiple paths has become more relevant over time. Bolstered by strong

theoretical groundwork [KV05, KMT07], support for enshrining traffic balancing at the transport layer

has gained momentum, leading to recent efforts in the standardization of multipath transport [FRH+11].

The deployment of such protocols however is likely to be hindered by an operational reality; namely that

most path diversity is within the network, and that most providers are unwilling to relinquish control of

how traffic traverses their networks.

The network alone on the other hand appears incapable of managing traffic efficiently. For one,

operators are constrained to balancing traffic transparently due to end host expectations. On the other

hand, routers do not have enough knowledge of end-to-end traffic to make informed decisions on which

path each packet should take. In many cases operators have enhanced their ability to manage traffic

by extracting additional information per-packet, by looking beyond the network header, and per-flow,

by reconstructing data streams over time, both of which ingrain protocol specific behaviour into the

network. This increase of network awareness however comes at the expense of innovation at the edges,

as developers become increasingly constrained in what type of protocols can be deployed.

Whether applied to providers wishing to reduce costs or hosts attempting to maximize throughput,

the proliferation of unilateral solutions for resource pooling are manifestations of an underlying need.

Rather than confine resource pooling to a single point of the Internet architecture and risk alienating

a subset of stakeholders, this thesis explores how the existing Internet architecture can be extended to

1.1. Problem statement 13

accommodate both host and network requirements for resource pooling.

1.1 Problem statement
This thesis attempts to answer the following question:

Given the nature of Internet traffic, how can the current architecture be realigned to facili-

tate resource pooling at both network and transport layers?

In proposing to realign the current architecture, the emphasis of any proposed solution must be

applicable to the existing Internet architecture. The motivation for avoiding clean-slate solutions is

largely due to the nature of the problem at hand. The different forms of resource pooling which are to be

reconciled are as much a product of the Internet architecture as of its stakeholders. While it is clear that

a clean-slate approach to resource pooling would have resulted in a different architecture, it may also

have given rise to different stakeholders or different traffic patterns. By adhering to existing protocols,

any potential solution can be directly applied and, by extension, validated.

While resource pooling is prevalent across all layers, the focus of this work is mostly restricted

to reconciling network and transport layers. Most forms of resource pooling above the network layer

will attempt to benefit the end user, while below the transport layer most resources within a single

administrative domain will conspire towards the same ends. It is at the intersection of network and

transport layers where the juxtaposition of interests is greatest within the Internet architecture.

Facilitating resource pooling however should not dictate an outcome in the tussle between network

and hosts, but rather provide an architecture within which such a tussle can evolve. In some cases

balancing traffic solely from the hosts may be desirable, while in other cases providers may wish to

retain full control. Both represent extremes of a range of outcomes which should be possible within a

unifying architecture.

Finally, designing an efficient resource pooling architecture must take into account the nature of

Internet traffic. While scaling Internet traffic poses considerable technical challenges, understanding its

emergent properties plays a pivotal role in simplifying traffic management. Any solution presented must

not only address future traffic needs but also exploit its properties.

1.2 Contributions
This thesis contains the following contributions:

A mutualistic architecture which identifies re-feedback as a potential solution for bridging different

forms of resource pooling. Path Re-Feedback and Loss Exposure (PREFLEX) is unique in ex-

posing network path diversity to hosts, while making the network aware of performance metrics

which are instrumental to effective traffic engineering.

A model for balancing congestion is derived which enables providers to make more efficient use of

available end-to-end capacity. Compared to existing multipath transport protocols, balancing con-

gestion from within the network can support legacy applications as well as flows which are too

1.3. Publications 14

short to effectively explore path diversity. The proposed model is evaluated and shown to outper-

form traditional traffic engineering methods without the need for per-flow state within the network.

A novel methodology for flow reconstruction is detailed which recovers transport behaviour from

passive traffic traces. This includes a mechanism for round trip time (RTT) recovery based on

cumulative histogram construction and peak detection and a scalable process for systematically

classifying flow throughput dynamics.

A longitudinal analysis of Internet traffic spanning approximately 5.7 billion flows collected over five

years. Compared to previous studies, this work documents macroscopic shifts in the nature of

Internet traffic – where traffic originates from – as well as performing a significant reappraisal of

commonly held assumptions on how the Transmission Control Protocol (TCP) behaves in practice.

A resilient traffic management framework which can be unilaterally deployed by edge domains. The

proposed solution, INFLEX, is modelled upon software-defined networking principles while draw-

ing on the insights afforded by all aforementioned contributions above. The resulting system is

shown to provide fast, scalable, end-to-end fault detection with low overhead at either the end-

host or the network. Finally, extensions are described which allow INFLEX to equally perform

congestion balancing – resulting in a complete architecture for dynamic traffic management at the

edge requiring only sender-side modifications.

1.3 Publications
Software-defined network support for transport resilience

J. Taveira Araújo, R. Landa, R. G. Clegg and G. Pavlou

IEEE/IFIP Network Operations and Management Symposium (NOMS) 2014

A longitudinal analysis of Internet rate limitations

J. Taveira Araújo, R. Landa, R. G. Clegg, K. Fukuda and G. Pavlou

33rd IEEE International Conference on Computer Communications (INFOCOM) 2014

MALAWI: Aggregated longitudinal analysis of the MAWI dataset

J. Taveira Araújo, K. Fukuda

7th ACM CoNEXT Student Workshop 2011

Balancing by PREFLEX: Congestion Aware Traffic Engineering

J. Taveira Araújo, I. Grandi, R. G. Clegg, M. Rio and G. Pavlou

10th International IFIP TC 6 Networking Conference (NETWORKING) 2011

A mutualistic resource pooling architecture

J. Taveira Araújo, M. Rio and G. Pavlou

3rd ACM International Workshop on Re-Architecting the Internet (ReArch) 2010

1.4. Thesis Outline 15

The Need for Congestion Exposure in the Internet

T. Moncaster, L. Krug, M. Menth, J. Araújo, S. Blake, R. Woundy

draft-moncaster-conex-problem-00, IETF Internet draft 2010

1.4 Thesis Outline
This thesis is organized as follows:

Chapter 2 provides an overview of how resource pooling has evolved across different layers of the

Internet architecture, detailing how network resources are pooled end-to-end, through congestion

management, and how traffic is balanced across multiple paths.

Chapter 3 proposes PREFLEX, a resource pooling architecture which accommodates both congestion

control and traffic engineering through the application of re-feedback.

Chapter 4 builds upon the foundation of the previous chapter and models and evaluates a functional

congestion balancer, allowing the network to perform dynamic, adaptive traffic engineering by

crowd sourcing information from end hosts.

Chapter 5 presents a longitudinal study on Internet interdomain traffic and characterizes the impact of

structural changes in content distribution on underlying traffic patterns.

Chapter 6 follows on from the previous chapter, delving into the nature and evolution of rate limitations

affecting traffic exchanged over TCP.

Chapter 7 revisits the architectural concepts introduced in chapters 3 and 4 in light of the findings

presented in chapters 5 and 6. A unilaterally deployable solution providing scalable, resilient

traffic management is presented modelled upon recent advances in software-defined networking.

Chapter 8 draws conclusions on the present work and posits potential directions for future work.

Chapter 2

Resource pooling

The Internet was designed around the ability to pool shared resources. From an initial desire to share

mainframes, resource pooling has grown to encompass statistical multiplexing within links and across

paths, and is indigenous to every layer of the network stack [WHB08]. This chapter briefly reviews how

resource pooling has evolved within the Internet architecture and proposed future directions. Section 2.1

reviews how capacity is shared end-to-end, and how ensuing congestion is managed while section 2.2

focuses on how traffic is allocated and balanced across different network paths.

2.1 Pooling end-to-end: congestion management
Much of the value of the Internet is derived from the ability to pool capacity end-to-end: the statistical

multiplexing afforded by packet switching resulted in a more efficient network, far better suited to the

bursty nature of computer traffic than prevalent circuit switched alternatives. Where demand outstrips

supply however, congestion arises. This is the inevitable consequence of sharing scarce resources, and

as such should not be viewed as a problem in and of itself. The difficulty lies in resolving this contention

both efficiently and fairly.

2.1.1 Historical precursors

Early work in defining congestion, and forever ingraining the term in networking nomenclature, can be

traced to work on queuing systems by Kleinrock [Kle75] beginning from 1961. However, it is in the

work of Paul Baran at RAND [Bar64b] that a deeper concern for the implications of congestion can be

found.

Baran’s work on a “distributed network concept” 1 was intended for military purposes, and as

such was required to deal with traffic overload gracefully. Traffic was expected to be marked by users

according to a military precedence system. During times of traffic overload, Baran envisioned a priority

control console, operated directly by a military officer, which would regulate the allocation of capacity

to each traffic class. Control was in the network. In part, this reflected military chain of command, but

Baran had uncovered an additional cause for concern which would later resurface in the Internet: during

times of crisis, users could not be trusted to mark their own traffic:

1The term packet switching was yet to be adopted. It would later be imported from similar work by Donald Davies and others

at National Physical Laboratory, UK (NPL).

2.1. Pooling end-to-end: congestion management 17

Messages once labelled “Deferred” will be stamped “Operational Immediate,” and

jammed back into the input hopper. It is analogous to the inflationary competition of com-

peting buyers for scarce goods. We temporarily delude ourselves into thinking that we are

buying more capability by inflating the precedence indicator.

Long before such notions would become widespread, Baran had both identified an economic con-

text to congestion and the inherent flaws in precedence marking which would later malign the Internet

Protocol (IP). Underlined in the document are two further passages:

Communications networks are rarely exercised in real-time to simulate extensive commu-

nications network damage and overload.

A communication network that does not let the user know how long it will be before his

message will be delivered to the end addressee may be theoretically oscillatory.

Both would prove prescient as the Advanced Research Projects Agency Network (ARPANET) took

off in 1969. The ARPANET was at the helm of an ideological battle between packet switching and

circuit switching, and much early work would revolve around the search for an architectural identity.

While commonly identified as the precursor to the Internet, the ARPANET was akin to connection

oriented networks such as X.25. Messages would be relayed between Interface Message Processors

(IMPs) towards hosts, with each IMP ensuring reliable, in-order message delivery.

In the midst of debates over layering or the relative merits of connection and connectionless ar-

chitectures, there was little interest in understanding how network resources should be shared. By and

large, there was also no need. A combination of abundant capacity, slow terminals and inefficient data

protocols ensured that contention was a rare occurrence. Initially, hosts could only send one outstanding

message at a time, resulting in poor performance which would decrease proportionally to the number

of hops in a connection. By 1971, the peak burst rate recorded between hosts was 40kb/sec using par-

allel connections, approximately 50% of bottleneck capacity [Cer74]. Even within such systems, loss,

however rare, could prove problematic, and its detection was being debated by Postel and others in 1973

[Pos73, Hat73]. It was becoming evident that existing flow control was inefficient. Additionally, end-

to-end acknowledgements would be necessary, as Baran had predicted almost a decade in advance. The

death knell for the connection-oriented architecture would come from France, where the CYCLADES

[Pou73] network had demonstrated the feasibility of building reliable communications on top of unreli-

able network elements. The simplicity and elegance of this datagram network and associated windowed

flow control were quickly adopted within ARPANET.

The specification of the TCP [CI05] in 1974 pushed connection establishment, sequencing, flow

control and message reassembly towards the end-host. The architectural blueprint for what would be-

come known as the Internet was almost complete, but not without some loose ends. For one, the Inter-

network header conflated seemingly different functions. By 1975, efforts had begun to separate the IP

header from the TCP header 2. Likewise, the nature of congestion was still not thoroughly understood.
2Vestigial traces of this late separation are still evident - to this day the calculation of the TCP checksum takes into account the

IP header.

2.1. Pooling end-to-end: congestion management 18

When referring to TCP retransmissions, Cerf and Kahn point out that “the HOST level retransmission

mechanism (...) will not be called upon very often in practice. Evidence already exists that individual

networks can be effectively constructed without this feature”. In an assessment of ARPANET protocols

from the same year [Cer74], Cerf lists under unresolved problems and issues that “the IMP subnet must

have a way of combating congestion which may result from too rapid influx of data”. This mechanism

would later materialize as the Internet Control Message Protocol (ICMP) Source Quench option [Pos81],

whereby routers could notify senders to reduce their rates. Alongside TCP flow control, it would prove

to be the only means of managing congestion as Network Control Program (NCP) was finally replaced

by TCP/IP on Flag Day, 1982.

That more attention was not paid to managing congestion in the eight years between the initial

specification of TCP and its eventual deployment is unfortunate. However, there was little indication as

to the potential gravity of the problem. By 1982, there were still only 235 hosts on the Internet [Lot92].

Most of these would have been attached to packet switches over protocols providing flow control such

as X.25. Furthermore, there were more pressing concerns elsewhere. Work was under way in refining

applications which would drive initial demand. Addressing and routing posed scalability concerns as

it became clear that the number of potential networks would rapidly exceed the limit of 256 seen as

sufficient only a few years earlier [CI05]. The host table was becoming too large to distribute as a single

file and so distributed alternatives were needed [Moc87, BLNS81]. With no progress on any of these it

is unlikely the Internet would have become large enough to become a victim of its own success.

Finally, extensively testing how the network would operate under load was never an option. Unlike

contemporary packet switched networks such as CYCLADES, the ARPANET had always been too use-

ful to be anything but a production network [Day10]. Within four years of Flag Day the number of hosts

would increase tenfold and connectionless Local Area Networks (LANs) would become widespread. By

1986, congestion collapse was recurrent as hosts persisted in retransmitting packets into an overloaded

core. Baran’s vision of a packet-switched network had come full circle.

2.1.2 TCP congestion control

The importance of congestion control within TCP was first highlighted by Nagle [Nag84] in 1984. Work-

ing at Ford Motor Company, which operated the only private TCP/IP long-haul network at the time,

Nagle reported periods of excessive load and unusual congestion problems. Nagle proposed alterations

to address the small-packet problem, in which an excessive number of small packets were generated for

the transmission of keyboard strokes, and to improve the handling of ICMP Source Quench messages.

Neither would prove sufficient in the long run. As issues arising from congestion increased, so too did

the interest within the community to address the problem. Independent work by Jain and Ramakrishnan

at Digital Equipment Corporation (DEC), Phil Karn, Lixia Zhang and Craig Partridge had all begun to

converge on similar solutions for managing congestion, but ultimately it would be Van Jacobson who

would synthesize the model for congestion control which is still prevalent today.

In [Jac88], Van Jacobson begins by asserting that for a system to be stable each connection should

abide by a “packet conservation principle”: a new packet should not enter the system until an old packet

2.1. Pooling end-to-end: congestion management 19

Transmission number

C
o

n
g
e

s
ti
o

n
 w

in
d

o
w timeout

ssthresh

slow startslow start congestion avoidance

3xDUPACK

fast retransmit + fast recovery

Figure 2.1: TCP congestion control.

leaves 3. Building on this intuition, two separate moments in a connection lifetime are identified, as

shown in figure 2.1.

Initially, a connection must attempt to reach equilibrium by ramping up its window size during a

slow-start phase. From an initial congestion window (cwnd), a TCP connection increases the conges-

tion window by one packet for each acknowledgement (ACK) received, until congestion is detected or

the window size surpasses the slow-start threshold (ssthresh), an initially predefined system variable.

The resulting increase in the congestion window is exponential, and thus expected to exceed available

capacity at most by a factor of 2. Prior to the introduction of slow-start, this overshoot was potentially

much higher as hosts would initiate a connection by immediately adjusting to the receiver’s advertised

window.

Upon exiting slow-start, a flow is deemed close to equilibrium. The TCP sender moves to the

congestion avoidance phase, where an Additive Increase Multiplicative decrease (AIMD) strategy is

used to probe for available bandwidth. In the absence of congestion, the window is increased by one

Maximum Segment Size (MSS) every round trip time. If congestion is detected, the window is halved

and slow-start threshold (ssthresh) is readjusted to this value.

To signal congestion Van Jacobson settled on packet loss. While loss could arise from data cor-

ruption, such cases were considered sufficiently rare as not to hinder efficiency. Loss provided a poor

resolution signal, but was the only form of congestive feedback shared by all networks 4. The efficiency

of retransmission was further improved by providing a more accurate estimate of the RTT, and including

a mechanism for fast retransmit. The resulting changes were quickly deployed as TCP Tahoe and proved

instrumental in curbing congestion.

Congestion control would go on to become a staple of networking research. Successive refinements,

including the addition of fast recovery resulted in TCP Reno [Ste97] and then TCP NewReno [PAS99],

which would become the most commonly accepted and widely deployed congestion control algorithm

for over a decade. Variants such as Vegas [BOP94] and Fast AQM Scalable TCP (FAST) [WJLH06]

3While often attributed to Van Jacobson, the concept of packet conservation was not new. Its origins can be traced at least as far

back as 1972, when Donald Davies proposed a similar “isarithmic” approach for controlling congestion within networks [Dav72].
4ICMP source quench, despite being widely deployed, was not a viable solution for reasons described in section 2.1.4.

2.1. Pooling end-to-end: congestion management 20

would complement the use of loss with the estimation of queuing delay, and adjust rates accordingly.

Binary Increase Congestion Control (BIC) and CUBIC [XHR04, HRX08] addressed rate adjustment as

a binary search problem and would be adopted by Linux distributions. Finally, Compound TCP (CTCP)

[TS06], deployed from Windows Vista onwards, would use loss and delay as a combined congestion

signal, tracking both as separate components before calculating an overall congestion window.

In spite of these changes, the core of TCP congestion control algorithms can still be directly traced

to Van Jacobson’s initial proposal. That a stop-gap solution has managed to sustain the growth of the

Internet for over two decades is an outcome even Van Jacobson could not have anticipated. In [Jac88],

concern is expressed in that “the congestion control noise sensitivity is quadratic in w but it will take

at least another generation of network evolution to reach window sizes where this will be significant”.

Despite work to address such inherent scaling issues [Mat09, Kel03], TCP has remained unchanged - as

bandwidth increases so too will the time between loss events. Likewise, while TCP shares bandwidth

efficiently, there was no claim the outcome would be fair. In describing future work, Van Jacobson

observes that “only in gateways, at the convergence of flows, is there enough information to control

sharing and fair allocation”. Over the coming years, congestion management would slowly seep into the

network.

2.1.3 Traffic shaping

The introduction of congestion control in TCP addressed the growing pains as the Internet scaled to

become a network of networks. Congestion however plays an equally important role within networks.

On a short time scale, there is a variable cost which an operator must pay its own providers for transit

traffic. On a longer time scale, there is a fixed cost in upgrading capacity at each provisioning cycle. By

minimizing congestion, operators hope to reduce both.

From a provider’s perspective, congestion is commonly defined as the average utilization of a link

over some period of time. Under this definition, the most congested link does not necessarily experience

the highest packet loss, but rather exhibits the highest utilization over an extended period of time. This

reflects the volume-based pricing models typically used between networks, the most common of which

is 95th percentile pricing. Under such a scheme, aggregate traffic rates are calculated over each time

window of duration t. At the end of each billing cycle, time windows are ordered by traffic rate, of

which the highest 5% are discarded. The largest remaining traffic rate represents the 95th percentile rate

that is used to charge customers. Inbound and outbound traffic are usually tracked separately, of which

only the most significant is charged.

Both hosts and network remain intent in reducing their own view of congestion, but in doing so

pursue potentially disparate objective functions. Over time, the changing nature of Internet traffic, tech-

nology and stakeholders has exacerbated this tussle [CWSB05]. In [BCL09], Bauer et al. characterize

the evolution of Internet traffic into three phases:

• Prior to the 1990s, the Internet was largely confined to academic and research purposes. Con-

gestion typically occurred within the core, as long haul lines would often trail behind local area

networks in terms of bandwidth. Traffic was dominated by a small number of applications - mail,

2.1. Pooling end-to-end: congestion management 21

bulk file transfer and low bandwidth interactive sessions - all of which were tolerant of congestion.

Furthermore, the Internet was still small enough that congestion was viewed as a shared concern

to be jointly addressed by the community.

• By the 1990s the commercialization of the Internet was in full swing, attaining mass market status

as residential users signed up for dial-up access. The dramatic increase in user base was somewhat

attenuated by the existence of a bottleneck at the edge. Dial-up offered low data rates of up

to 56.6kb/s and intermittent connectivity, both of which were instrumental in curbing demand.

The most significant new application protocol, Hyper Text Transfer Protocol (HTTP), put more

demands on end systems than on the network, as web servers scaled to cope with thousands of

simultaneous requests. Congestion within the network was rare and most likely to occur at data

modem banks which would in effect perform admission control - excess subscribers attempting to

connect would receive a busy signal.

• Since 2000, the advent of broadband access lifted bandwidth constraints at the edge and pushed

congestion deeper into Internet Service Providers (ISPs). Higher data rates coupled with “always

on” connectivity led to a much larger set of applications placing different demands on the network,

from bandwidth hungry file sharing to congestion sensitive Voice-over-IP (VoIP) or video stream-

ing. Network provisioning, previously driven by the needs of commercial clients, would become

increasingly driven by the usage patterns of residential customers.

The proliferation of media-rich applications led to a growing disparity between customers. A mi-

nority of “heavy” users incurred the majority of costs from pooling available bandwidth despite paying

the same flat fee as remaining “light” users. In the long term, capacity upgrades would prove ineffective

in quenching demand from the former group while passing unwarranted costs onto the latter. Faced with

a deluge of data and having to satisfy the needs of a diverse range of both applications and customers,

network operators inevitably took it upon themselves to manage congestion.

The Internet architecture however does not provide the means for a network to manage conges-

tion effectively. Furthermore, the communal approach to addressing problems had since grown into a

cumbersome and convoluted standardization process within the Internet Engineering Task Force (IETF)

[Bus05]. Unsurprisingly, operators quickly resorted to piecewise solutions to artificially stifle demand

with little consideration on the wider impact of their actions. These attempts at traffic shaping would

take on a variety of forms.

One method of reducing congestion is by limiting the total volume of traffic a subscriber can send or

receive over a given period and applying penalties should this cap be exceeded. This method imposes the

least technical requirements as volume accounting is already widely performed. While volume capping

introduces an expected upper bound for the volume of traffic traversing a network over each billing cycle,

it fails to address demand patterns over shorter time scales. Subscribers within their volume allowance

can still cause considerable congestion by acting synchronously, for example by being active during

peak hours only. Conversely, volume capping unnecessarily penalizes applications which shift their

traffic towards less congested periods.

2.1. Pooling end-to-end: congestion management 22

Alternatively, congestion can be potentially reduced by throttling throughput. By imposing rate

limits during periods of oversubscription, providers may attenuate the impact any single traffic source

can have on others. Doing so efficiently however is challenging. For one, available capacity and periods

of congestion cannot easily be narrowed to a single throughput threshold or time period. In provisioning

rates for the worst expected case, providers forsake efficiency when contention may not arise. Further-

more, throttling can be performed on a per-customer or per-flow basis. In the former case, throttling fails

to take into account how much shared capacity a customer has occupied over time, degrading perfor-

mance equally for heavy and light users alike. Throttling flows on the other hand may prioritize types

of traffic for applications using specific port ranges. Applications affected by such network policing will

however tend to adapt over time, either by changing port or increasing the number of flows to bypass

throttling.

Volume capping and rate throttling are necessarily naive and inefficient as they can function on

network layer information alone, but in doing so are largely benign. Either method however can be

performed selectively by inspecting packet contents in order to prioritize traffic. These attempts at Deep

Packet Inspection (DPI) have had a much more nefarious effect on the Internet. The introduction of

DPI middleboxes break layering, introduce complexity within the network and hinder the deployment

of new, innovative applications and transport protocols at the edge. Applications targeted by DPI have

become increasingly stealthy, often masquerading as HTTP traffic. The ensuing arms race between

traffic obfuscation and traffic identification methods has been waged at great cost to the Internet as a

whole and little benefit to any stakeholder in particular.

In addressing the tussle surrounding congestion, transport and network communities applied suc-

cessive independent fixes rather than reaching a compromise within a common architectural solution.

Over time, the damage caused in adopting the former has only strengthened the arguments for the latter.

2.1.4 Explicit congestion control

In previous sections unilateral solutions to congestion management were reviewed, where either end-

hosts or networks perform their duties in isolation. The overbearing dominance of the transport layer

in resource sharing was shown to be an ex post construct: neither Baran [Bar64a], Cerf [CI05] or, for

that matter, Van Jacobson [Jac88] envisaged an Internet where control was exerted from the edges alone.

This section reviews proposals where both endpoints and network share responsibility for managing

congestion through the use of explicit congestion control, whereby sources adjust sending rates according

to explicit network feedback.

There have been enough failed attempts at deploying explicit congestion control on the Internet that

it has become common to overlook the fact it was once the dominant model for congestion management.

Prior to TCP congestion control, hosts performed end-to-end flow control alone. While most underlying

data layer protocols provided some degree of flow control, gateways could signal overload by sending

ICMP source quench messages to sources. Hosts were then expected to reduce sending rates upon

receiving this explicit feedback from the network. Unfortunately, the source quench mechanism was

marred with oversights. The specification of ICMP[Pos81] stated that source quench messages “may”

2.1. Pooling end-to-end: congestion management 23

be sent by gateways for every packet it discards. However it also allowed source quench messages to

be emitted by gateways approaching, rather than exceeding, their capacity limit. As a result, upon being

cautioned by a gateway, a sender had no indication of whether the packet at fault had been discarded.

Under such circumstances, the source host “should cut back the rate (...) until it no longer receives

source quench messages from the gateway”, but no further indication on how such a goal can be attained

was provided. Confusingly, destination hosts could also emit source quench messages if overcome by

processing, duplicating functionality already present at the transport layer [Pos80].

Source quench was inevitably deprecated [Bak95], crippled by overloaded semantics and a lack

of obligation or guidance for sender compliance. In retrospect, source quench messages represented

an attempt at doing too little, too early [CHM+03]. Endpoint congestion control would only come of

age with TCP Tahoe. Prior to the continuous control theory mechanisms introduced by Van Jacobson,

Jain, and others, there was no framework within which explicit feedback could be modelled. Only with

the onset of congestion collapse events did many of the frailties of source quench messages become

apparent. There was no understanding of the problem at hand until it was too late.

Despite this failed first attempt, interest in applying explicit network feedback to the Internet did

not wane. In 1988 Jain and Ramakrishnan proposed an explicit binary feedback scheme for congestion

avoidance which would evolve into DECbit [RJ90]. Under such a scheme, the network header would

contain a single bit which could be toggled by intermediate routers experiencing the onset of congestion.

The resulting bit would then be returned to the sender. If at least half of the previous congestion window

had been marked, the sender would decrease its window by 7/8, otherwise it would continue to increase

its sending rate additively.

DECbit proved promising enough to be ported to IP with minor changes as the Explicit Congestion

Notification (ECN) protocol [Flo94]. ECN would reuse two bits from the Type of Service (ToS) field

to retrieve binary network feedback. If neither bit was set, a packet is deemed to be non-ECN Capable

Transport (ECT) and therefore legacy traffic. If either bit was set, both hosts had established the us-

age of ECN during the initial handshake and the packet belongs to an ECT flow. Having detected the

onset of congestion according to a given Active Queue Management (AQM) discipline, an ECN aware

queue would then set both bits to encode the Congestion Experienced (CE) code point. Unlike DECbit,

a single CE marking would be sufficient motive for a sender to decrease its congestion window, making

ECN compatible with probabilistic AQM mechanisms such as Random Early Detection (RED) [FJ93].

Furthermore, the multiplicative decrease was more conservative than in DECbit, and followed the ex-

isting TCP standard of halving the congestion window. This conscious decision to make ECN enabled

traffic perform similarly to legacy TCP over large time scales would strip it of a potentially important

competitive advantage in deployment whilst retaining one of the less scalable components of TCP.

Both DECbit and ECN proved to be too little, too late. Proposed at the same time as TCP congestion

control, DECbit was initially shunned in favour of a practical solution which could be rapidly deployed

and rectified. By the time sufficient experience with binary explicit feedback had been gained through

deployment in DECnet, the Internet had dramatically changed. The standardization of ECN [RFB01]

2.1. Pooling end-to-end: congestion management 24

arrived in an Internet overrun by commercial interests which neither understood the problem nor valued

the solution. As the Internet scaled in size, so too did its inertia to change, ossifying architecturally

around a core set of protocols. Each new addition would be required to address an otherwise unassailable

problem. In an era of dial-up access and rapid roll-out of improvements in TCP congestion control, ECN

seemed like a costly anachronism. Deployment was further hampered by broken TCP implementations

and routers which could adversely affect connection establishment for ECN enabled traffic. Despite

improvements [Kuz05] ECN remains poorly used and turned off by default on hosts and routers alike

[BBB11].

Ironically for a protocol which has been plagued by deployment issues, the widespread availability

of ECN in commodity network equipment may yet reassert its relevance. Proposals such as re-ECN

[BJCG+05] leverage ECN in order to achieve cost fairness. Variable-structure congestion Control Pro-

tocol (VCP) [XSSK08] overrides ECN semantics to provide an additional bit of congestion information

per packet. Data Center TCP (DCTCP) [AGM+10] repurposes ECN to achieve high throughput with low

buffer usage within a data centre environment. Rather than reacting to each marking as a potential loss

event, DCTCP sources reduce their window proportionally to the fraction of marked packets. From a

sequence of single bits, DCTCP derives and acts upon a multi-bit signal. Both DCTCP and VCP retrofit

multi-bit network feedback, itself the subject of much research.

The first concerted attempt at deploying multi-bit network feedback would arise in Asynchronous

Transfer Mode (ATM) networks. ATM provided a connection-oriented data link layer over which service

categories with different Quality of Service (QoS) constraints would coexist. In addition to addressing

precise throughput and delay requirements through the Constant Bit Rate (CBR) and Variable Bit Rate

(VBR) services, ATM offered an Available Bit Rate (ABR) service [BF95], catering for applications

with vague requirements and intended as a cost-effective means of supporting data traffic. Applications

using ABR would specify ranges of acceptable rates which the network would then satisfy through the

dynamic allocation of available bandwidth amongst virtual circuits.

ATM was primarily driven by telecom operators who embraced the concept of explicit network

control of rates. Capitalizing on similar work on DECbit, an Explicit Forward Congestion Indication

(EFCI) code point was integrated into the ATM data header to provide binary feedback on congestion

along a path. In parallel however, research progressed on rate-based feedback, where the network would

explicitly provide sources with the allowed sending rate. Since ATM used small, fixed size packets,

called cells, control information was preferentially provided through different payload types. As a result,

ABR sources in addition to sending standard data cells would periodically emit a Resource Management

(RM) cell to communicate requirements and retrieve information from intermediate network nodes. The

RM cell contained fields for different parameters of interest, such as the Minimum Cell Rate (MCR),

Peak Cell Rate (PCR), Additive increase to rate (AIR) or Rate decrease factor (RDF). Upon receiving a

RM cell, ATM switches would readjust the cell payload to reflect local conditions if they could not meet

the specified requirements. The information contained within the updated RM cell would then be fed

back from the destination to the source, which would readjust their rates accordingly.

2.1. Pooling end-to-end: congestion management 25

ABR would prove a prolific source of research in explicit network feedback. As ATM waned in

popularity however, so too did research efforts within the context of ABR. In its wake, a wide set of pro-

posals for traffic management, including credit-based and rate-based approaches, had been investigated,

often concurrently [Jai96]. With little consensus and no unifying vision however, the ABR rate-based

framework would encompass different mechanisms with often overlapping functionalities: too much,

too early.

Multi-bit network feedback would resurface applied to Internet traffic with the eXplicit Congestion

Protocol (XCP) [KHR02]. Taking a clean slate approach, Katabi et al. revisited congestion control

without the constraints imposed by existing network equipment. The resulting proposal introduces a

shim congestion header between the IP and TCP headers carrying estimates of the flow RTT and inter-

packet time [KF07]. Additionally, a delta throughput field contains the allowed increase in throughput,

and is set to the maximum value at the source. As a packet traverses routers, the value of delta throughput

is updated by routers according to local conditions. The feedback loop is then closed as destinations copy

the value of the inbound delta throughput field into the outbound reverse feedback field. Upon receiving

network feedback, the source updates its congestion window according to the function:

cwnd = max (cwnd+ reverse feedback ·RTT,MSS) (2.1)

While functionally similar to the rate-based framework proposed in ABR, XCP represented a sig-

nificant step forward in explicit congestion control. For one, XCP bypassed the need for flow state

which was assumed in ATM networks. Secondly, XCP specified a cohesive mechanism for redistribut-

ing bandwidth as opposed to expecting a variety of methods to coexist. An Efficiency Controller (EC)

periodically calculates the amount of bandwidth F to be distributed over the following control interval d

according to:

F = α · (C − input bw)− β · q
d

(2.2)

where C is the link capacity, input bw is the inbound throughput and q is the persistent queue length.

Constants α and β are set to ensure stability by weighing the amount of spare bandwidth allocated and

the rate at which the queue is drained. The available bandwidth F is then distributed amongst flows by

the Fairness Controller (FC), which calculates the delta throughput to be applied for each packet:

delta throughput =


F
N ·

X
d if F > 0

F · s
input bw·d if F ≤ 0

(2.3)

whereN is the approximate number of flows, calculated as the sum of inter packet timeX normalized by

control interval d. If the resulting delta throughput is smaller than the existing value in the congestion

header, the router updates the field accordingly before forwarding the packet.

Using multi-bit feedback XCP achieves high efficiency and stability with negligible queuing de-

lay. In prioritizing queue drainage and system stability however XCP presented a natural performance

bias towards long flows. Under high utilization, only a small proportion of bandwidth would be reshuf-

fled resulting in a potentially slow convergence to flow fair rates for short-lived flows. Recognizing the

2.1. Pooling end-to-end: congestion management 26

importance such flows had in overall user experience, Dukkipati et al. proposed the Rate Control Pro-

tocol (RCP). Building on the explicit congestion control framework proposed by XCP, RCP emulates

processor sharing by emphasizing the Average Flow Completion Time (AFCT) rather than delay stability

[DKZSM05]. Rather than calculating a change to the source congestion window (cwnd), the equivalent

FC in an RCP system calculates the explicit maximum rate R to be set for flows traversing a router at

interval n:

Rn = Rn−1 +
F

N
(2.4)

where N , the approximate number of active flows, is obtained by:

N =
C

Rn−1
(2.5)

By setting a single rate for all flows within an RTT of flow start, RCP rapidly redistributes band-

width, but does so at the expense of queue stability. RCP proved well suited for web traffic where

completion time is often of greater importance than jitter. As with XCP, the requirement for both end

systems and bottleneck routers to be overhauled would prove too high a barrier for incremental deploy-

ment. To blame the lack of deployment of either solution on hardware requirements alone however

would be disingenuous, and ignoring the most valuable lesson of all. Both offered a compelling univer-

sal solution to a problem now escalating with pluralism: too much, too late. Many of the shortcomings in

TCP congestion control are inherent to limitations in the amount of information one can infer from loss.

In hindsight, that proposals as disparate as XCP and RCP had emerged in spite of a wealth of explicit

network feedback signalled a growing lack of consensus within the community on how to move beyond

Van Jacobson’s legacy. By 2007, a tongue-in-cheek rebuttal of flow fairness [Bri07] would only widen

this rift. For a growing minority, the absence of an overarching solution to managing congestion was

no longer construed as an inability to provide the right answer, but as a symptom of asking the wrong

question.

2.1.5 Congestion exposure

Resource sharing has evolved haphazardly to being performed by end-hosts and network alike. This

apparent duplication of effort and source of potential conflict suggests a rare lack of foresight within

the Internet architecture. More confounding however is that unlike other architectural mishaps, such as

the conflation of locater and identifier within addressing, the absence of progress regarding a solution is

rooted in a lack of consensus in identifying the problem.

A clearer understanding of resource sharing was built over time by importing notions from simi-

lar work in economics, where contention for scarce goods is well understood. The concept of pricing

congestible resources was pondered as early as 1995 [MMV95]. The breakthrough in applying shadow

pricing to a network would come through the work of Kelly [KMT98], who both proved that social wel-

fare could be maximised if each pair of hosts were charged in accordance to the congestion they cause,

and that under such a model self-interested behaviour would lead to a stable network under a small set

of assumptions. Furthermore Kelly showed that such a scheme could be easily realized by charging a

receiver according to the number of bytes marked as having experienced congestion through the use of

2.1. Pooling end-to-end: congestion management 27

Source DestinationR
2

R
1

RECT

CE

Re-Echo

Packet marking

Figure 2.2: Simplified model of re-ECN.

ECN which was still undergoing standardization. Kelly’s work proved a radical departure from con-

ventional wisdom. By sharing capacity equally amongst flows TCP had been hard-wired with a single

concept of fairness. That social welfare was shown to be maximized only when users were forced to

weigh demand according to expected cost suggested that flow fairness was sub-optimal. As ever the

notion of charging a user variable costs proved unpopular [Odl04], while charging the receiver instead

of the sender proved impractical. Building on Kelly’s work, Briscoe would resolve both shortcomings.

In [BJCG+05], Briscoe et al. introduce the concept of re-feedback. Re-feedback attempts to correct

an information asymmetry in forwarding traffic: a provider often knows less about the quality of service

it provides than the sender. Due to this asymmetry, Kelly correctly identified the receiver-end as the

only point where the entirety of path congestion could be accounted for by the network. Information

on congestion provided by ECN is fed back from the receiver to the sender in the transport header, and

is therefore not visible to routers. Furthermore, the return path may differ from the forwarding path.

By reintroducing this explicit feedback in the next outbound packet however, a sender can provide the

network with information on the state of the forwarding path, albeit with one RTT of delay. Applying re-

feedback to ECN lead to the specification of re-ECN [BJMS08]. In addition to information on congestion

upstream, provided by ECN, re-ECN introduces the congestion over the entire path from the previous

RTT in the IP header.

A simplified illustration of how re-ECN functions is displayed in figure 2.2. A source emits packets

with the Re-ECN Capable Transport (RECT) code-point set. Upon detecting the onset of congestion,

a congested resource which is ECN enabled may flag the packet as CE. A destination then feeds the

explicit congestive feedback back to the sender. So far the system described merely follows the be-

haviour of a standard ECN system. Re-ECN differs from ECN in that in addition to adjusting its sending

window to congestive feedback, it marks the following packet as a re-echo. In figure 2.2, this allows

router R1 to estimate the volume of downstream congestion, towards the destination, by simply sub-

tracting the volume of CE marked bytes from the volume of re-echoed bytes. By subtracting the current

upstream congestion from the previous full path congestion, re-ECN allows intermediate routers to esti-

mate downstream congestion. Revealing downstream congestion to routers in turn allows senders, rather

2.2. Pooling across multiple paths: traffic balancing 28

than receivers, to be made accountable for the congestion they are expected to cause.

An important contribution stemming from work on re-ECN was to expose a wider networking com-

munity to a new goal within resource sharing, pushing the research agenda from flow-fairness towards

cost-fairness [Bri07], and proposing congestion volume as the metric on which cost should be assessed.

Variable congestive charges for users were avoided by policing sending rates according to a congestion

allowance [JBM08]. Once such an allowance was exceeded, a sender’s traffic would be shaped into com-

pliance by the ingress policer. While protocols such as XCP or queuing disciplines such as Weighted

Fair Queuing (WFQ) allowed bandwidth to be distributed differently amongst flows, the notion of a con-

gestion allowance adds a temporal dimension to congestion management. By managing their allowance,

hosts are provided an incentive to shift bulk traffic to off-peak times and may complete short flows more

aggressively than by using existing TCP congestion control.

Work on re-ECN would evolve into the Congestion Exposure (CONEX) working group within the

IETF [MABW09]. Remarkably for a protocol change affecting both the transport and network layers,

congestion exposure would garner limited support from either community. Many providers did not

identify congestion as a problem and those that did, such as Comcast, were able to get by developing

localized solutions [BKL+09]. Others may have felt uncomfortable in exposing such a sensitive metric

to potential competitors. Within the transport community there was a natural reluctance to move away

from flow-fairness [FA08]. Arguably the greatest impediment to deploying congestion exposure is the

fact it relies on many small changes which together radically alter how resource sharing is performed

on the Internet. Proving the overall framework is robust and reliable enough to work on a large scale is

non trivial, and even minor issues such as the time scale over which a congestion allowance should be

replenished have the potential to trigger significant operational ramifications.

2.2 Pooling across multiple paths: traffic balancing
Congestion management typically attempts to share end-to-end capacity for a given path. Between each

source and destination however multiple routes may be available. This section reviews how different

entities attempt to explore path diversity in order to perform resource pooling.

2.2.1 Traffic engineering

Providers routinely attempt to balance traffic across available network resources. On each provisioning

cycle, operators try to adjust their infrastructure to cope with expected demand. Between cycles how-

ever demand may fluctuate considerably, either due to variations in traffic patterns or alterations in the

customer base. Given the static nature of physical infrastructure, between provisioning cycles traffic can

be shaped to avoid overloading the current path, assigned to alternate paths, or the path itself may be

reconfigured. The set of tools by which an operator can optimize routing and balance traffic to achieve a

desired allocation of traffic across a network is commonly referred to as Traffic Engineering (TE). Traf-

fic engineering methods may be applied to attain different QoS objectives such as minimizing maximum

link load, balancing load distribution or minimizing delay and typically vary in scope and timescale.

The scope of a TE method is either restricted to an intradomain setting, where traffic is optimized

2.2. Pooling across multiple paths: traffic balancing 29

within a single domain, or interdomain traffic, in which a network influences the ingress and egress

through which traffic crosses its borders. Traditionally there has been a stronger focus on intradomain

TE due to the greater control an operator has over its own resources. Additionally, the possibilities and

limitations of a traffic engineering process are in large part determined by the underlying routing proto-

col. Traffic engineering was first adopted within Multi Protocol Label Switching (MPLS) networks and

then adapted to intradomain routing protocols such as Open Shortest Path First (OSPF) and Intermedi-

ate System to Intermediate System (IS-IS). Interdomain traffic engineering methods encompassing the

Border Gateway Protocol (BGP) have proved more convoluted.

The timescale over which TE is expected to adapt to traffic demand also varies. In offline TE, a

Traffic Matrix (TM) is collected tracking demand between ingress and egress nodes over a fixed time

period. This traffic matrix then serves as a forecast of future demand in the next iteration of a recurring

routing optimization process. The periodicity of routing updates is typically in the order of weeks or

months in order to ensure network stability. Online TE on the other hand does not require a prediction

of future demand and operates entirely by adapting dynamically to traffic on a timescale of hours or

minutes. Online methods have remained largely unexplored, in part due to the difficulty in making sure

the dynamic system converges in the absence of a global view on traffic.

Offline intradomain TE is the most commonly used variant of traffic engineering, and originally

gained momentum with the deployment of MPLS [RVC01]. In MPLS networks, packets are forwarded

according to labels rather than addresses. At each ingress Label Switching Router (LSR), a packet is

encapsulated and assigned to a Forwarding Equivalence Class (FEC). The resulting label is then used

to forward the packet along a Label Switched Path (LSP) towards the egress LSR. While there are

practical limits in how many paths can be maintained and non-negligible overheads in setting up an

LSP, the ability to forward packets explicitly along arbitrary routes was instrumental in initial attempts

at effective traffic engineering [XHBN00, WW99].

In contrast, IP-based TE solutions are more scalable but less flexible. Traffic engineering was first

applied to Interior Gateway Protocols (IGPs) such as OSPF by Fortz et al. [FT00, FT02], who proposed

setting link weights according to traffic demand in order to attain TE objectives. Theoretical work would

further prove that any arbitrary set of loop-free paths could be transformed into shortest paths through a

given set of weights [WWZ01]. Unlike MPLS methods however, traffic cannot be unevenly split natively

in IP traffic engineering. To do so requires the use of Equal Cost Multipath (ECMP), which balances

traffic equally across next hop routers for paths with the same cost. Originally ECMP was specified to

split traffic on a per-packet basis, which may lead to out-of-order delivery and affect transport protocols

as a result [TH00]. This approach has since been obsoleted and replaced by splitting traffic on a per-flow

basis [FGL+00].

Online intradomain TE proposals built on their offline counterpart and fulfilled a desire for con-

trolling traffic at a finer granularity. Multipath Adaptive TE (MATE) [EJLW02] proposes splitting traffic

dynamically over precomputed LSPs. By using probes, MATE continuously monitors packet delay and

loss over each path between ingress and egress LSR in order to adjust the ratio of traffic to be split at

2.2. Pooling across multiple paths: traffic balancing 30

the ingress. TE with XCP (TeXCP) [KKDC05] improves on MATE by emitting probes which retrieve

explicit feedback from intermediate TeXCP-aware routers in a manner similar to XCP. Furthermore,

TeXCP distributes load using Flowlet Aware Routing Engine (FLARE) [SKK04] which balances traffic

by flowlet rather than flow. Given the bursty nature of TCP, traffic splitting may be performed on a

smaller scale than a flow so long as there is no risk of causing packet reordering. A flowlet is therefore

defined as a sequence of packets with an inter-arrival time shorter than the difference in delay between

potential paths. Balancing by flowlet allows FLARE to achieve not only greater efficiency than flow

variants of ECMP, but also maintain less state as flowlets expire more rapidly than flows.

A second approach to online intradomain TE is to dynamically optimize routes in accordance to

demand. In MPLS networks this may however cause LSP interference [KL00], in which excessive paths

crossing the same critical link are set up resulting in congestion. For IP-based TE changing link weights

dynamically is possible, but strongly discouraged due to potential instability during the convergence

process [LMJ98].

Interdomain TE has received less attention than intradomain traffic engineering and can be further

categorized according to whether it is applicable to outbound traffic or inbound traffic. The methods

available in either case are strongly dependent on the path selection process [QPS+03] in BGP, the

prevalent interdomain routing protocol.

Outbound TE is most often performed by manipulating the local preference (Local pref) attribute

of a route for each egress router, with the highest preference assigned to the preferred egress. For

sufficiently tied outbound routes, in which amongst other metrics the Local pref and Autonomous Sys-

tem (AS) path length are equal, the lowest IGP weight can be used as a tie breaker. This form of hot

potato routing, which offloads traffic to another domain as quickly as possible, can be manipulated to

achieve TE objectives through the appropriate setting of IGP weights. Explicit interdomain routing is

possible using MPLS if domains agree on cross border path establishment, but remains rare. Proposals

for outbound, interdomain TE typically attempt to minimize transit costs and delay [UB04, GQX+04]

or provision QoS requirements [HFP+05].

Research on inbound TE has been sparse as the route inbound traffic takes can only be influenced

rather than controlled. Mechanisms for affecting another operators choice in outbound path include se-

lectively advertising routes from specific ingress links, prepending the announced AS path with multiple

instances of the same AS to discourage its use [CL05], or manipulating the Multi-Exit Discrimina-

tor (MED) or community attribute to signal preferences to other domains [QTUB04].

As an afterthought in the Internet architecture, traditional traffic engineering suffers from being both

hidden from and oblivious to higher layers. With no indication as to how TE operates, hosts and other

networks will continually attempt to balance traffic according to their own needs potentially subverting

existing routing optimizations. With no understanding of how or why hosts balance traffic, TE may

be futile in outpacing dynamic traffic patterns [HCR06]. As a result of this architectural opaqueness,

TE can neither adapt too quickly or quickly enough. This double bind has left traditional TE confined

to operating over extended time scales largely out of fear of causing disruption [LMJ98]. That traffic

2.2. Pooling across multiple paths: traffic balancing 31

engineering is widely used in spite of being poorly understood only reinforces that it arises from a valid

concern, but whether routing optimizations are the most appropriate way of addressing such concerns

remains open.

2.2.2 Resilient routing

The previous section detailed how routing is burdened with the responsibility for balancing traffic effi-

ciently through the use of traffic engineering. A further concern often placed on the routing architecture

is in providing resilience. A routing protocol should by design reliably recover from failures, but the

degree to which such reliability can be assured depends on the time taken to detect a failure and then

reach a consensus and converge towards a new operating state which bypasses the failure.

Failure detection in link state protocols depends on the frequency of probes confirming network

adjacency, typically referred to as Hello packets. In OSPF this periodicity is configured through the

HelloInterval variable, and a failure detection event is triggered once the RouterDeadInterval has been

exceeded with no reply from a neighbour to Hello probes. Traditionally the HelloInterval has been

set to tens of seconds in default configurations. Reducing this interval results in faster failure detection

[GRF03] but doing so excessively may also lead to spurious failure events resulting in routing instability.

In IS-IS the HelloInterval is set at a second granularity and a failure is detected upon the loss of three

Hello packets, placing the lowerbound on failure detection at 3 seconds.

The deployment of real time applications with harder constraints on reliability coupled with better

failure detection methods embedded in linecards have provided both the motivation and the means for

achieving sub-second recovery within IGP networks [FFEB05]. Even with reduced recovery times, the

transient effects of routing changes can still disrupt the forwarding path. Under such cases the Fast Re-

Route (FRR) framework, applicable with minor changes to both IP [SB10] and MPLS [PSA05] based

routing protocols, provides repair paths which may be used between the detection of a failure and the

convergence of the routing process.

A commonly employed technique for constructing repair paths is to pre-compute Loop-Free Al-

ternate (LFA) next hops [TAC+08]. Upon detecting a failure of the default next hop nd, node s may

forward a packet towards destination d through backup neighbour nb in a loop-free manner by verifying

the following condition:

cost (nb, d) < cost (nb, s) + cost (s, d) (2.6)

that is, the cost of routing the packet from the alternate next hop to the destination is less than the packet

being looped back to the source en route to the destination. While this ensures link protection, failures

often occur at nodes. To protect against node failure, a next hop must additionally satisfy:

cost (nd, d) < cost (nb, nd) + cost (nd, d) (2.7)

that is, the cost of routing the packet from the alternate next hop to the destination is less than routing

the packet from alternate next hop to the destination via the default next hop. A final condition must be

2.2. Pooling across multiple paths: traffic balancing 32

met to avoid routing loops in the presence of multiple failures, ensuring that packets progress towards

the destination at all times:

cost (nb, d) < cost (s, d) (2.8)

LFA incurs low computational and memory overhead and requires no changes to the forwarding

plane, making it a practical choice for bypassing most failures. Further proposals [Atl06, BFPS07,

SPB11] would provide coverage for increasingly complex failure scenarios at higher implementation

cost.

A long-standing concern with resilient routing is the potential for cascading failures, in which de-

touring leads to overload at a separate point in the network and potentially triggers more failures. As

with traffic engineering the use of multi-topology routing can assist in distributing load through the avail-

ability of different routing planes. This concept is explored in Multiple Routing Configurations (MRC)

in which successive routing configurations are pre-computed by isolating nodes and links, thereby cov-

ering all single failure scenarios. Upon detecting a failure, the plane on which a packet is forwarded is

switched to the configuration where the failing resource is isolated. Overall load distribution is improved

through the offline calculation of alternate routes, but guaranteeing recovery from all single failures may

not be scalable for some topologies.

Most research in network resilience has been limited to within a single domain. In part, this is

due to the perception that upon leaving a domain an operator is no longer responsible for verifying

traffic is delivered. Unfortunately the end-to-end nature of traffic often leads to misattribution of blame

upon ISPs in particular, who share the burden of third-party failings through customer support. More

importantly however, the lack of deployed multipath alternatives for BGP reduces the flexibility with

which detouring can be performed. A practical solution in this space seems inevitable however: in

addition to many proposals enabling multipath interdomain routing [Yan03, XR06, MEFV08, GGSS09],

the emergence of alternate, deployable routing architectures to address scalability concerns such as

Identifier Locator Naming Protocol (ILNP) [ABH09] and Locator/Identifier Separation Protocol (LISP)

[LFFM12] are undergoing standardization. Whether BGP is extended or locator and identifier functions

become decoupled from existing addressing, the ability to manage interdomain traffic resiliently is likely

to improve.

2.2.3 Higher layer approaches

Concurrently to traffic balancing within the network, higher layers have developed different techniques

to manage traffic according to their own needs.

The introduction of concerted attempts to balance traffic from the host would arise with the advent of

the Web. HTTP flows were as short as they were numerous and represented a new class of traffic which

had not been foreseen when designing TCP [Day10]. Scaling infrastructure to cope with thousands

of connections robustly would require spreading load efficiently across servers. To attain seamless load

balancing content providers resorted to an existing layer of indirection: the Domain Name System (DNS)

[Moc87]. In replying to a query, a DNS server can balance traffic by providing a different answer from a

2.2. Pooling across multiple paths: traffic balancing 33

pool of available servers [Bri95]. Merely iterating through the list in round robin fashion is sufficient to

balance traffic coarsely, but efficiency may often be affected since an answer can be cached and re-used

by a potentially large set of clients. To provide increased fault-tolerance DNS load balancers quickly

evolved to return results in accordance to server load and availability. More recently, the widespread

geographic distribution of hosting infrastructure has reasserted the importance of DNS in managing

traffic and optimizing delay in particular [AMSU11].

By explicitly selecting a content source, DNS load balancing permits hosts to implicitly change the

network path. The ability for hosts to explicitly change the network path had originally been provisioned

in the IP specification through source routing, but was quickly obsoleted. Source routing was initially

intended to both facilitate network debugging and overcome inherent shortcomings in contemporary

routing protocols [Sun77]. Neither would justify maintaining source routing in the long term as the

Internet expanded and became increasingly commercial. In its strict form, source routing required prior

knowledge of every router along a path which was infeasible given the sheer scale of the topology. In

its loose form, a host could define intermediate routers a packet would traverse. While more practical

than strict source routing, loose source routing as defined in IP was inherently insecure as the ability to

spoof IP addresses and establish routing loops could lead to amplification attacks from malicious hosts.

Critically, operators disliked both forms of source routing, neither willing to share operational details of

their network nor keen in supporting a mechanism which allowed users to subvert local routing policies.

The combination of all of the above would eventually lead to the deprecation of the Loose Source and

Record Route (LSRR) option.

Despite having been disabled from the current architecture, source routing has been frequently

revisited in research. Traditionally source routing has been viewed as a host-centric solution, allowing

senders to select better performing paths or circumvent traffic discrimination [MZPP08, DMG+10].

More recent research however has attempted to recast source routing as a potential asset to an ISP.

Perhaps the greatest benefit source routing offers operators is in reducing the impact of resilience

on the routing architecture. In Scalable One-hop Source Routing (SOSR) [GMG+04], Gummadi et

al. investigate the usefulness of one-hop source routing in order to improve reliability. Through the

use of active measurements over a week to measure path availability, Gummadi estimated an average

path availability for servers at 99.6%, and for broadband hosts at 94.4%. Gummadi then implemented

a simple “random-4” hop selection which attempts to detour around failures by selecting four random

intermediate nodes from a pool of available choices, managing to recover flows in 56% of possible

cases. This study provided two important results. Firstly, in localizing failures the study asserted that

for popular servers failures were more likely to occur in the core of the network than close to the last

hop. This is likely to correspond to the majority of Internet traffic as content becomes increasingly

consolidated [LIJM+10a]. Secondly, by investigating different policies for the selection of the detour

hop Gummadi further corroborates an intuitive result: that most benefit can be derived from a small

number of alternatives.

Detour routing had previously been investigated in the context of overlay networks such as Resilient

2.2. Pooling across multiple paths: traffic balancing 34

Overlay Routing (RON) [ABKM02], but implementing such a function at the network layer would re-

quire a more opaque form of source routing in order to appeal to network operators. In [YW06], Yang

and Wetherall propose an incrementally deployable routing deflection scheme through the use of tagging.

The main contribution resides in the separation of how a deflection is constructed from how a deflection

is invoked. A router constructs a deflection set composed of viable routes to a given destination, in a

similar manner to LFA, and then forwards packets along deflections in accordance to a tag in the net-

work header. Hosts are then responsible for setting this tag and may modify it at any time. The resulting

scheme can offer much of the potential hinted in SOSR, but without the requirement for networks to

reveal operational information. Hosts merely manipulate their tag until they achieve a desired outcome.

The fundamental tussle between end-user intentions and ISP control would further be investigated

in [LJC08]. In analysing “user-directed” routing Laskowski et al. claim that such a tussle can be resolved

given a flexible enough payment system. While no suggestion is made on what form such a payment

system would take, a market-based approach is shown to allow ISPs to induce any feasible traffic pattern.

In the absence of a suitable solution for source routing, applications have improved path performance

and availability implicitly through the use of overlay architectures. Popular peer-to-peer applications

such as Skype or Bittorrent already derive many of the benefits of pooling traffic across multiple paths,

but do so in a manner which may be detrimental to competing traffic. P2P applications ensure path

diversity by establishing flows to multiple peers. With TCP sharing bandwidth equally amongst flows,

an application making use of multiple flows may gain a significant advantage over traffic flowing through

a shared bottleneck. In addition to consuming a disproportionate amount of bandwidth, in consistently

saturating links such applications may induce significant delays. Solutions for attenuating the impact

of such traffic would take many forms [PC09], from traffic shaping to weighted congestion control, but

in framing a multipath overlay atop of a single path transport layer a pertinent question would emerge:

what form should a multipath-aware transport layer take in an Internet dominated by TCP?

Multihoming would provide the initial motivation for developing a socket abstraction for the con-

current use of multiple paths [Hui95, HS02, IAS06]. These early attempts would mostly focus on the

protocol changes required to achieve a robust and efficient multipath transport service. The implication

of such flows on fairness and the impact of multipath transport on overall system stability would first be

explored in theoretical work by Kelly and Voice [KV05] who would use a fluid-flow model to demon-

strate traffic balancing can be performed at end-hosts in a stable manner on the same timescale as rate

control. In evaluating an end-to-end algorithm for joint routing and rate control, the authors conclude

that while the network layer is able to provide structural information on routing, dynamic routing is

more naturally performed by the transport layer. Work by Key, Massoulié and Towsley [KMT07] would

corroborate these results. The authors show that the use of parallel connections, a form of uncoordinated

control, can lead to inefficient equilibria in the presence of RTT bias which afflicts most TCP variants.

Importantly, the use of a coordinated congestion controller, which actively shifts load between a set of

paths in accordance to their state, can result in a welfare maximising state even if with RTT bias. These

theoretical advances would take shape in Multipath TCP (MPTCP) [WRGH11], currently undergoing

2.2. Pooling across multiple paths: traffic balancing 35

standardization.

While MPTCP promises many of the benefits predicted by Kelly and Voice, some practical issues

remain unresolved. Firstly, access to path diversity is ensured through the use of multihoming. This

has the unfortunate side-effect of further overloading the IP address as a path identifier in addition to

locator and host identifier. Furthermore, end-host multihoming, while prevalent in mobile devices, is not

commonly used. Secondly, it is unclear what proportion of flows can resort to MPTCP. The combination

of overhead in setting up multiple sub-flows and time required to adapt the sending rate to the channel

capacity limits the applicability of MPTCP to long transfers. The majority of flows are too short to use

MPTCP, but could derive much benefit from using multiple paths, particularly in terms of resilience.

2.2.4 Rethinking traffic management

The proliferation of highly replicated content across P2P systems, Content Distribution Networks

(CDNs) and One-click Hosting (OCH) services has motivated research in alternative forms of traffic

management. By allowing users to download the same content from multiple sources, networks can

explore opportunities for load balancing by influencing from where or when content is retrieved.

Exploiting the prevalence of content replication in P2P applications for the purpose of reducing ISP

costs was first proposed in Provider portal for applications (P4P) [XYK+08]. P4P proposed deploying

portals operated by network providers through which peers could query a collection of interfaces detail-

ing network policy, costs or capabilities from a provider’s perspective. Given this information, a host

could then select a set of remote peers which would minimize the impact of traffic in the network. For

ISPs, P4P provides a means of signalling costs. P2P applications on the other hand benefit from not

being discriminated against by being sociable, and not having to probe the network to derive network

topology or status. P4P would evolve into Application Layer Traffic Optimization (ALTO) and undergo

standardization within the IETF. Similar approaches for reducing cross ISP traffic would be explored in

ONO [CB08], which collects information implicitly available in CDNs to establish proximity of peers.

Research in harnessing content replication has followed the shift in content distribution from P2P

software to CDNs hosting. In [AMSU11] the authors investigate CDN and hosting infrastructures to

establish the proportion of content unique to a single provider and show that some hosting infrastructures

have as much as 93% of their content available elsewhere. This property is exploited in [PFS+12],

in which the authors propose Content-aware Traffic Engineering (CaTE), which allows ISPs to take

advantage of content available in multiple locations to reduce link utilisation. In CaTE, an ISP influences

where a content request is redirected to by intercepting DNS requests and selecting a server according to

local objectives. Interestingly, CaTE may still present advantages to content providers, since ISPs have

more accurate information on the location of their customers and tend to choose shorter routes.

In parallel, multiple proposals have explored the potential for shifting delay-tolerant traffic to off-

peak hours. In [LR08] the authors describe a mechanism that offers users higher bandwidth off-peak if

they deliberately delay some of their traffic. Further contributions [JWHC11, CLRS10] represent similar

attempts to shift traffic in time by providing incentives to users.

Traditional traffic engineering manipulates routing weights given an expected demand. Such an

2.2. Pooling across multiple paths: traffic balancing 36

approach was acceptable when Internet traffic revolved around communicating endpoints - the source and

destination of a flow were assumed to be immutable. The Internet has long shifted towards distributing

content, and with it become characterized by fluid traffic patterns which adapt and react to changes in

routing. Under such conditions, it is more flexible for operators to subvert TE and adjust demand given

a set of routes in order to attain an intended QoS objective. CaTE and ALTO attempt to reflect network

interests in the selection of an end-to-end path and focus on a small set of sources of high volumes of

traffic: P2P applications and CDN downloads. While this may currently be effective in load balancing

traffic within a network, such application specific approaches may become ineffective in the long run as

traffic patterns continue to change with the introduction of novel, disruptive applications.

Chapter 3

A mutualistic resource pooling architecture

While the Internet has become evermore interconnected, exploring path diversity has been relegated

to an afterthought in an architecture modelled around assumptions that no longer stand. Single-path

forwarding as a paradigm arose not as a guiding principle, but as a natural aversion towards increasing

both the complexity and cost of a resource starved network. Engineering for scarcity has propelled the

Internet to an unprecedented scale, but nagging issues arise when what was otherwise scarce becomes

plentiful. Protocols designed to be bit conservative at the expense of latency have become technological

anachronisms as bandwidth costs continue to plummet. Similarly, the notion of a router as a device

merely capable of forwarding packets has long been obsolete as Moore’s law continues to pave the way

for greater functionality within the network. Network Address Translator (NAT), DPI or Performance

Enhancing Proxy (PEP) middleboxes are all examples that when it comes to drawing a boundary between

network and transport, the line begins to blur [FI08].

Furthermore, parallelism seems to be a dominant trend at every level of the Internet architecture

as a cost-effective means of increasing both performance and robustness. At the inter-domain level, the

AS graph is becoming flatter and more highly interconnected [HFU+10]. Within domains, the sheer

complexity of managing paths has led to the streamlined design and deployment of MPLS [RVC01],

implementing a fully fledged layer in its own right. At the edges, the rise in multi-homing continues

to increase the strain on an already overloaded routing architecture. Even within network components,

parallelism is such that packet re-ordering can no longer be considered pathological [BPS99].

Given these trends, one would expect the ability to pool traffic across such emergent path diversity

to have become a network primitive. In reality, each stakeholder in the Internet architecture seems to

balance traffic according to their needs while attempting to remain inconspicuous to others. At best, this

interaction between stakeholders can be seen as a form of commensalism, where one entity can extract

benefits while others remain unaffected. At worst, the competitive nature of the tussle [CWSB05] that

ensues can spiral into a situation where few profit.

This chapter investigates the nature of this antagonism between network and endpoints and reflects

on how the Internet can accommodate the needs of both through the use of PREFLEX, a proposed

architecture for balancing congestion which promotes mutual cooperation between end-hosts and edge

network providers.

3.1. Resolving the tussle 38

3.1 Resolving the tussle
The ability to evolve beyond single path forwarding has often been misdiagnosed primarily as a routing

challenge. The subject is frequently revisited with varying approaches [Sun77, Yan03, YW06, GGSS09].

Despite this, multipath routing has remained elusive for end-hosts. The common trait all these proposals

share is a failure to identify the tussle over resource control as a significant obstacle in moving towards

the use of multiple concurrent paths.

Given an explicit goal of the Internet was to accommodate a variety of networks, very few assump-

tions could be made on the basic functionality they could support. The Internet architecture therefore

placed resource control at the edges, in what can be viewed as an instantiation of the end-to-end princi-

ple [SRC84]. This represented a fundamental paradigm shift, ultimately conferring the scalability which

fuelled the growth of the Internet. While unilateral control of a network resource by hosts was already

polemic in an academic research network, with the rise of the commercial Internet this notion has slowly

been set aside by stakeholders intent on exerting control over their own networks.

Network operators have now become accustomed to inspect, shape and throttle traffic in an attempt

to override resource sharing as implicitly performed by TCP. A common cause for such behaviour could

derive from the perceived free riding made possible by TCP, whereby a minority of users can gain an

disproportionate amount of bandwidth, with detrimental effects for the majority of users. In a broader

sense, networks attempt to reflect their own objectives and concerns. Because this was not contemplated

when designing the existing resource sharing model, subsequent violations of the end-to-end principle

say more about the limitations of the current architecture than the ill intent of the perpetrators.

Nowhere is this more apparent than in traffic engineering. Network operators rely heavily on TE to

balance utilisation over long time scales in an attempt to reduce costs by making efficient use of available

paths. Since information at the network layer is limited, TE typically optimizes locally for the wrong

metric – utilization – in detriment of the congestion it may be causing elsewhere. Additionally, this

optimization is typically executed offline, and re-computed over long time scales to minimize the im-

pact to higher layers and ensure stability. The limiting assumption is that traffic patterns are exogenous.

In reality, hosts will often find means of adapting to network conditions, such as establishing overlay

networks. This resulting shift in behaviour may in turn conflict with the concurrent traffic engineering

process, which will have to readjust to a substantially different traffic matrix in a next iteration. Tra-

ditional traffic engineering mechanisms can therefore neither adapt too often out of fear of disrupting

transport protocols, nor adapt often enough in order to adequately react to changes in traffic. As a result,

there is still considerable space for improvement in existing traffic engineering:

The problem of optimizing routes given an expected demand has been solved. Solutions for offline

traffic engineering [FT00, WW99, WWZ01] are often touted to be optimal despite relying on

approximate inputs, but for the most part the resulting routing optimizations are good enough.

What remains to be solved is how traffic engineering can deal with deviations from the predicted

traffic demand. For any form of online traffic engineering, the act of balancing traffic on-the-fly

over a multipath routing architecture is perceived as more practical than attempting to design a

3.1. Resolving the tussle 39

routing substrate which adapts to traffic demand. Given a stable set of routes, how should traffic

be balanced?

At a small enough timescale, traffic engineering can replace resilient routing entirely. For any suf-

ficiently reactive TE process, a path failure will lead to a shift of traffic onto alternate paths. Even

online approaches such as MATE [EJLW02] and TeXCP [KKDC05] have hesitated to be com-

puted at a sub-minute granularity however, and in many cases hosts are more capable of shifting

traffic robustly given access to underlying path diversity. How can traffic engineering be designed

to offer better resilience than routing protocols, and in what cases can it delegate such functionality

to hosts?

The distinction between intradomain and interdomain TE is a hindrance. The duality emerges due

to traditional traffic engineering being tightly coupled with the underlying routing protocol. All

traffic engineering within a single domain however must target the same objectives or risk insta-

bility. A further source of instability of TE methods is in taking local decisions without taking into

account the end-to-end ramifications. How should traffic engineering methods be unified, and how

can timely end-to-end information on traffic be collected in a scalable fashion within the network?

The network has appropriated flow semantics from the transport layer. Balancing traffic per-

packet has been replaced by a per-flow granularity, further ingraining transport behaviour in

the network. In part this reflects the changing nature of the IP model, which now expects in-order

delivery from the network [Tha10]. FLARE [SKK04] illustrates that maintaining in-order delivery

need not span the entirety of a flow, but maintains the notion of the flowlet internal to the network.

What are the potential benefits of explicitly decoupling the notion of a transport flow from a

network flowlet?

In stark contrast with traffic engineering, the interest in the use of congestion control to balance

traffic across paths has gained significant traction, particularly in the wake of seminal contributions

[KMT07, KV05] which provide the theoretical basis for much of the standardization effort behind

MPTCP [WHB08]. MPTCP provides the means for stable traffic balancing from the transport layer.

This alone however is unlikely to overcome significant architectural shortcomings:

Path diversity is in the network. Given networks are already concerned with TCP’s ability to share

bandwidth in its single path incarnation, it remains unlikely ISPs will consider making path diver-

sity visible to end-hosts. This opaqueness currently restricts deployment of MPTCP to multihomed

hosts. Experiments with one-hop source routing [GMG+04] indicate that a small set of network

paths can provide the majority of the benefit in terms of resilience. While multihoming may be-

come popular amongst hosts, it is already a requirement amongst providers. Diversity is in the

network, how can it be pushed outwards and made available to end-hosts?

Traffic is best balanced from the edge, but may conflict with network objectives. Work by Kelly

and Voice [KV05] indicates load balancing can be more effectively performed at the transport

3.2. PREFLEX 40

layer in order to maximize social welfare. However this fails to take into account the requirements

of network operators, who are saddled with costs which bear little resemblance to the congestion

pricing schemes advocated by Kelly. While TE methods are crude, they address valid concerns

and accommodating these mechanisms within the Internet architecture is essential in order to min-

imize conflict with end-to-end resource pooling. Re-ECN [BJMS08] demonstrated the value of

congestion as a metric within the network, but its operation is too tightly coupled to ECN which is

itself not widely deployed. Additionally, retrofitting accountability into the Internet seems marred

in technical pitfalls. If the constraints on providing accurate accountability are relaxed, can some

form of congestion exposure provide useful feedback on host preferences to the network?

Most flows may not benefit from MPTCP. For short flows, the overhead incurred in multiple subflow

establishment is excessive. Furthermore, for long flows with bursty behaviour, such as rate-limited

video streaming [RLL+11], MPTCP may not have sufficient time to pool bandwidth across multi-

ple paths efficiently. The transport layer requires probing the network for every connection. With

no prior information or limited time to collect information on network state, the full benefits of

multiple paths for resilience in particular are unlikely to be harnessed. In such cases, how can the

network complement, rather than necessarily override, transport balancing?

Neither congestion control or traffic engineering alone seem fully capable of bridging the divide

between networks and end-hosts. The discussion around the relative merits of both is often manichaean

and erroneously simplified as a conflict between advocates and opposers of the end-to-end principle.

This entirely misses the point. The concern should not revolve around whether an approach is right or

wrong, but whether it is applicable within a given context or not. The recognition of the commercial

network as a fundamental stakeholder is intrinsic to the evolvability of the current architecture. In the

absence of such recognition, the gulf between the perception of how the Internet should behave and how

it functions in practice will only widen. Traffic engineering and congestion control represent an explicit

duality – underlying both should lay a unifying architecture allowing either to evolve independently

while not foregoing cooperation.

Recent research in resource sharing has suggested that much of the misalignment between network

and transport derives from the lack of accountability for congestion [Bri07]. While previous work had

modelled and analysed the broken incentive structure subjacent to forwarding traffic from an economic

perspective, work on re-feedback and congestion exposure [BJCG+05] pioneered a practical means of

alleviating the tussle surrounding resource sharing. In particular, congestion exposure advocates the use

of congestion volume, rather than throughput or traffic volume, as the by-product by which the impact

of traffic should be assessed. Building upon this approach, the next section presents PREFLEX, a joint,

mutualistic architecture for congestion control and traffic engineering.

3.2 PREFLEX
The PREFLEX architecture can be split into two independent components. At the network, a mechanism

for Path Re-Feedback (PREF) is defined, whereby stub domains can signal a preferred path to end-hosts

3.2. PREFLEX 41

according to local policy or perceived path quality. At the end-hosts, a transport agnostic protocol for

Loss Exposure (LEX) is used, which explicitly marks packets within a flow in order to signal path loss

back to the network.

While functionally separate, in practice both components work in tandem. The use of loss exposure,

while executed by hosts, provides network operators with feedback on end-to-end path loss. Conversely,

with path re-feedback hosts are allowed access to paths selected by the network. Together, PREFLEX

bridges the divide between network and transport layers and facilitates balancing by congestion, rather

than necessarily load, over the multiple paths typically available solely to edge networks.

3.2.1 Loss Exposure

LEX is proposed as a simple protocol for revealing loss, which not only borrows heavily from re-ECN

[BJMS08], a protocol for congestion exposure, but which can coexist and serve as a stepping stone for

the deployment of the latter. Revealing information currently confined to the transport layer down to the

network both reduces the need for the network to inspect higher level protocol headers in order to re-

distribute bandwidth differently and corrects the information asymmetry that currently afflicts networks,

who know less about the quality of service they provide than their customers.

The first change proposed for LEX is to have end-hosts mark, at the network layer, packets be-

longing to flows where feedback has not been established. This typically corresponds to the first packet

exchange in a flow, such as SYN packets in TCP, but may also include the first packet after a signifi-

cant idle period, a keep-alive packet or a renewed attempt at a retransmission after successive timeouts

in the case of network failure. Within LEX, as with re-ECN, all such packets where a flow does not

have accurate and timely information on network conditions should be labelled as Feedback Not Estab-

lished (FNE), with the IP header being marked accordingly.

The signalling of such packets has many practical implications. For one, from simply inspecting the

IP header, networks are made aware of the first of a succession of similar packets, which poses significant

advantages in allocating state in middleboxes, whether it be to perform admission control, policing or

traffic shaping. All of the above are possible by inspecting TCP, but this makes apparent an architectural

illusion: that a connectionless layer should be oblivious to connection setup. Explicitly providing such

information at the IP layer alleviates in some measure the need for consistent violation of layering by

network equipment, or hopefully circumscribes such practices to a small subset of packets.

Additionally, the concept of a transport flow, which establishes an association between two end-

points, is decoupled from the concept of a network flow, which will henceforth be referred to as a flowlet

[SKK04]. A flowlet is defined as a stream of packets which end-hosts expect to follow the same network

path. The same transport flow may be composed of a single flowlet, parallel flowlets, or a succession

of different flowlets. This feature is particularly advantageous for balancing traffic as flowlets provide a

finer granularity than existing flows, as well as allowing flows to quickly switch path without breaking

the transport session.

Once feedback has been established, hosts adjust their sending rate in response to implicit con-

gestive signals such as delay or packet loss, or explicit signals such as ECN. Protocols for congestion

3.2. PREFLEX 42

CODE POINT MEANING

Not-LECT Not Loss Exposure Capable Transport

LECT Loss Exposure Capable Transport

LEx Loss Experienced

FNE Feedback Not Established

Table 3.1: LEX code points and description.

exposure, such as re-ECN, mark outgoing packets according to the explicit congestion marking received

from the network. As such, IP packets would carry two congestion markings. The first indicating the

congestion experienced so far and the second indicating the end-to-end congestion experienced by the

host in the previous RTT. With this re-feedback of congestion markings, networks are able to estimate

rest-of-path congestion, which is an important metric for keeping customers accountable for the conges-

tion they cause and providers accountable for the services they offer.

LEX specifies a simplified form of congestion exposure which uses the implicit information con-

tained in losses as opposed to relying on the widespread deployment of congestion notification. Where

packet loss does arise, LEX requires that hosts mark their respective retransmits with a LEX code point.

The drawback of this approach is that only the end-to-end congestion can be estimated from a stream

of packets, which implies that traffic can only be reliably aggregated close to the source, and effectively

policed close to the receiver. Since the focus of PREFLEX is balancing congestion at a stub domain

however, this limitation is not significant.

If run as a complement of re-ECN, three of the four code points in table 3.1 are potentially shared, in

which case only the loss experienced code point has to be added to the re-ECN specification. For routers

along the path, an accurate estimate of the end-to-end path loss can be obtained by simply dividing the

sum of bytes marked with the loss experienced code point, by the total traffic marked as either Loss

Exposure Capable Transport (LECT) or LEX. Additionally, one could envision a preferential dropping

mechanism which prioritizes retransmits.

3.2.2 Path re-feedback

For networks, the most significant hurdle in adopting multiple paths for a single destination is not the

path selection process, but rather the difficulty in assigning packets to paths. Since balancing traffic at

a packet granularity has severe repercussions for the transport layer, network operators have typically

resorted to splitting traffic by destination prefix. Increasingly, networks have also been able to afford the

cost of keeping flow state in an attempt to balance traffic at a finer granularity.

Neither of these approaches are strictly necessary in a mutualistic architecture – one in which a

division of responsibility between host and network is performed for the benefit of both. Since hosts are

made aware of the path packets take, flow state can be pushed outwards, placing the responsibility for

assigning packets to paths at the endpoints. This enables hosts to benefit from existing path diversity.

Networks then only need to perform path selection according to local policy and pass the information

3.2. PREFLEX 43

DST

SRC

Y

X

PREF C

OUT

DST

A

X

B

C

Loss

pa

pb

pc

1

2

3

INBOUND

(a) Inbound FNE packet

OUTBOUND

DST

SRC

X

Y

PREF C
PREF

DST X

C

5

4

6

7

(b) Outbound traffic

Figure 3.1: PREFLEX architecture.

onto the end-host. This allows finer control over traffic in a scalable manner.

For this purpose, FNE packets, as defined in LEX, are used to act as network triggers for path

selection. An ISP or stub domain, upon detecting an incoming FNE packet, selects a preferred outgoing

path based on the reverse lookup of the source address, and marks the packet with a path identifier. For

IP Version 4 (IPv4), a possible location for such marking to occur could be within the Differentiated

Services (DS) field, where a set of code points are reserved for local use. On receiving an FNE packet

containing a path identifier, a sender should tag all subsequent packets in the flowlet using the same

identifier in order to ensure it will traverse the selected egress at the edge domain.

This behaviour is exemplified in figure 3.1. In PREF the network selects a preferred outgoing path

for each incoming FNE packet (figure 3.1a). Upon receiving the first packet of a flowlet, the PREFLEX

aware router performs a reverse lookup on the source address (step 1) and selects a path according to

the perceived performance (2). The router then associates the chosen path identifier to the packet and

forwards the packet toward the host (3). The treatment of outbound traffic by PREFLEX is illustrated in

figure 3.1b. The host, having received indication of the preferred path, tags all subsequent traffic with

the given path identifier. As the PREFLEX aware router receives this marked traffic it updates statistics

associated to path, aggregating loss for each destination prefix (4). It then discards the path identifier (5)

and forwards traffic along the appropriate path (6).

A subtle implication of triggering path selection based on incoming packets, rather than resorting

to out-of-band signalling for example, is that path selection becomes receiver driven. The responsibility

for defining a strategy on when and how often to attempt a path request lays firmly with the stakeholder

who extracts the most benefit. For example, a receiver valuing flow completion time may decide to

minimize the amount of FNE packets it sends in order to reduce network processing. Conversely, a

receiver valuing resilience or efficiency may emit additional FNE packets in the hopes that the sender

may acquire more network paths. The flip side is that because FNE packets require additional network

intervention, whether for selecting a new path or setting up state, networks may rate limit the amount

of FNE packets they receive in order to protect themselves from overload. This is the current line of

thinking with re-ECN, where FNE packets are used to set state in congestion policers.

3.3. Closing the loop 44

3.3 Closing the loop
This chapter broadly described an architecture which shares the responsibility for resource pooling be-

tween end-hosts and edge networks, but does not explicitly dictate an outcome. PREFLEX has been

designed to take into account the inevitable tussle which will occur between both, and envisages use

cases where control over resource pooling could feasibly shift entirely in one direction or the other.

At its most liberal, PREFLEX enables resource pooling to be entirely performed by end-hosts. At its

most conservative, PREFLEX affords edge network providers more fine-grained control over traffic than

before. Between either extreme, the resulting mutualistic architecture offers greater transparency, control

and robustness by realigning the interface between network and transport in order to accommodate the

needs of both.

In order to make PREFLEX deployable, the scope of the architecture has been restricted to stub

domains. While this necessarily reduces the amount of path diversity which can be explored, there are

compelling reasons to abdicate some flexibility in favour of a more practical solution:

Most benefit derives from a limited set of paths. Work on source routing [GMG+04, YW06] sug-

gests most improvement in resilience can be extracted from a small set of deflections. Stub

domains such as ISPs and enterprise networks are naturally multi-homed, and can provide rea-

sonable path diversity given an adequate selection of providers. Expecting the establishment of

cross-domain paths has been a pitfall for previous research in QoS in particular and is marred by

difficulties in providing incentives for all parties involved.

Stub domains are most aligned with user interests. For enterprise, academic and content distribution

networks, end-hosts are typically managed by the same entity which operates the network. For

ISPs, there is a binding contract between end-users and provider. In either case, the stub domain

not only benefits from not deteriorating the quality of service provided to hosts locally, but also

has an interest in making sure end-to-end traffic is unaffected by outages or degraded performance.

The inability to reach a website is often misdiagnosed by users as a failure of the stub domain,

rather than the intervening network path or the remote host. As a result, the burden of remote

failures is often placed on local customer support. PREFLEX allows resources not only to be

shared more efficiently, but also potentially reduces the impact of remote network events on stub

domains.

The Internet topology is flattening. In studying over 100 ISPs, transit providers and content providers

for over two years, Labovitz et al. [LIJM+10a] established the changing nature of the Inter-

net topology, migrating from a hierarchy of providers to an increasingly interconnected model.

The rise of Internet Exchange Points (IXPs) where customer networks peer directly with content

providers has had a profound impact in shaping traffic patterns and interdomain traffic in partic-

ular. The length of AS paths has decreased for most content. As a consequence, it has become

simpler for a stub domain to ensure path disjointness as a larger portion of the end-to-end path is

under its control.

3.3. Closing the loop 45

The resulting architecture provides many benefits. Balancing is both transport agnostic and allows

flow state to be kept to a minimum, requiring policing at the edges only if congestion accountability

is required. Additionally, path selection is receiver driven, aligning the stakeholder who can decide

when to issue FNE packets with the stakeholder who benefits the most. The key to path selection is the

information provided by the sender (point 7 in figure 3.1b), which allows the network to estimate path

loss on the same timescale as hosts. By pooling loss information from multiple hosts, the network may

additionally be made aware of path failures sooner than hosts using TCP inference.

Chapter 4

Congestion aware traffic engineering

While the previous chapter provides an architecture within which transport and network layers exchange

relevant information, it does not define how networks should select outgoing paths. This chapter presents

a possible solution for balancing traffic according to expected congestion which works under a wide

range of network conditions.

4.1 A model for congestion balancing
Consider LEX-capable traffic, that is explicitly marked as either being retransmitted or non-

retransmitted, from a single origin prefix to a single destination prefix, with a number of possible

paths and within a single time period. Let N be the number of paths (numbered 1, . . . , N). Let Ti be the

number of bytes sent down path i for the previous time period. Let Ri be the number of bytes marked

as retransmissions down path i for the previous time period. Let R =
∑
iRi and T =

∑
i Ti. While Ri

does not strictly represent the number of lost bytes, the ratio of Ri/Ti should be a good approximation

of the loss rate within period i. A starting assumption is that it is desirable to equalise the proportion of

lost bytes on all paths – that is make Ri/Ti equal for all i – since doing so maximizes social welfare and

mimics the behaviour of existing end-host only resource pooling solutions such as MPTCP.

The loss rate ρi = Ri/Ti to be balanced is an unknown function of Ti and Bi the bandwidth of the

link. It is, however, likely that the loss rate is increasing or at least non-decreasing with Ti. Similarly,

the loss rate is decreasing or at least non-increasing with the unknown Bi. Assume then that whatever

the true function, for a small region around the current values of Ti and Bi then it is locally linear

ρi = kiTi/Bi where ki is an unknown constant. Substituting gives

Bi/ki = T 2
i /Ri. (4.1)

Now consider the next time period. Use the dash notation for the same quantities in the next time

period. In typical time periods E [T ′] = E [T] since, for example, if the next time period on average had

more traffic, the overall amount of traffic would be growing. While this is true in the year-on-year setting,

this effect is negligible in the time scale discussed here. Now ρ′i = R′i/T
′
i = kT ′i/B

′
i. Choose the T ′i

to make all R′i/T
′
i = C (hence all equal) where C is some unknown constant. Therefore T ′i = CB′i/k

′
i

but if this is still near the locally linear region then B′i/k
′
i ' Bi/ki and Bi/ki is determined by (4.1)

hence the predicted distribution is T ′i = CT 2
i /Ri. Now it is necessary to calculate C by summing over

4.1. A model for congestion balancing 47

i. T = C
∑
i T

2
i /Ri and hence C = T/

∑
i T

2
i /Ri. This results in a usable loss balancing equation

given the available system inputs:

T ′i =
TT 2

i

Ri
∑
j(T

2
j /Rj)

. (4.2)

There is, of course, a problem when Ri = 0. Given the assumption that the traffic is assigned in

inverse proportion to loss rate, a branch with no loss would naturally have all traffic assigned to it. To

correct this,Ri is incremented for each path by one MSS. This problem is further explored in subsequent

sections.

4.1.1 Understanding the design space

Given local linearity is assumed, large adjustments to the traffic split are a potential cause for concern.

Some traffic must also be assigned to each route independently of the loss rate, in order to probe whether

the path is available. This leads to a small component of equalisation being used to ascertain that paths

are continually used. Finally, in the absence of loss, it is practical to assign traffic according to the

current traffic throughput split. This denotes a conservative approach to splitting traffic. Therefore,

there are three tendencies which must be accounted for: the loss-equalisation tendency from (4.2), the

equalisation tendency to ensure some degree of utilization across all paths, and a conservative tendency

to keep the traffic split the same as the throughput split in the previous period. Call the traffic split

assigned to path i by each of these schemes T (E)i, T (C)i and T (L)i where E, C and L stand for

“equal”, “conservative” and “loss-driven”.

The final distribution of traffic across all links is then:

T ′i = βET
′(E)i + βCT

′(C)i + βLT
′(L)i,

where the β• are user set parameters in (0, 1) such that βE + βC + βL = 1. Now T ′(C)i = Ti and

T ′(E)i = T/N whereN is the number of interfaces. This gives a first equation for the desired flow split

f ′i , which represents the probability with which path i will be assigned to a new flow:

f ′i =
T ′i
T

= βE
1

N
+ βC

Ti
T

+ βL
T 2
i

Ri
∑
j(T

2
j /Rj)

. (4.3)

While (4.3) describes a very broad design space, intuition on how each component performs is

provided through a simple example.

Consider a network balancing traffic from a source S to a given prefix as shown in figure 4.2. For

the current example, only two paths are available with equal bottleneck capacity L1 = L2 = 120Mbps,

For the duration of the experiment, a source balances traffic to C through either link. At t = 300s, cross-

traffic is generated from server D1 towards client C through L1. At t = 600s, a greater quantity cross-

traffic is generated from server D2 towards client C through L2. This topology is later revisited with

a greater number of paths in section 4.2, where more details are provided on the simulation parameters

used. For the present example, the respective throughput, loss rate and the proportion of flows assigned

to each path are shown in figure 4.1 for cases where each traffic balancing component is used in isolation,

and a final case in which all three components are used together.

4.1. A model for congestion balancing 48

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

Path 1
Path 2

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

Path 1
Path 2

 0

 50

 100

 0 300 600 900 1200

F
lo

w
 S

p
lit

 (
%

)

Time (s)

 0

 50

 100

 0 300 600 900 1200

F
lo

w
 S

p
lit

 (
%

)

Time (s)

Path 1
Path 2

(a) Equalisation.

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

Path 1
Path 2

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

Path 1
Path 2

 0

 50

 100

 0 300 600 900 1200
F

lo
w

 S
p
lit

 (
%

)

Time (s)

 0

 50

 100

 0 300 600 900 1200
F

lo
w

 S
p
lit

 (
%

)

Time (s)

Path 1
Path 2

(b) Conservative.

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

Path 1
Path 2

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

Path 1
Path 2

 0

 50

 100

 0 300 600 900 1200

F
lo

w
 S

p
lit

 (
%

)

Time (s)

 0

 50

 100

 0 300 600 900 1200

F
lo

w
 S

p
lit

 (
%

)

Time (s)

Path 1
Path 2

(c) Loss-driven.

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

 0

 60

 120

 0 300 600 900 1200

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

Path 1
Path 2

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

 0

 3

 6

 0 300 600 900 1200

L
o
s
s
 (

%
)

Time (s)

Path 1
Path 2

 0

 50

 100

 0 300 600 900 1200

F
lo

w
 S

p
lit

 (
%

)

Time (s)

 0

 50

 100

 0 300 600 900 1200

F
lo

w
 S

p
lit

 (
%

)

Time (s)

Path 1
Path 2

(d) Balanced.

Figure 4.1: Simulation using PREFLEX to balance traffic over two paths. Each simulation demonstrates

the dynamics of a single mode, except for (d) which balances between conservative and loss-driven

components.

4.1. A model for congestion balancing 49

S

D
N

C

L
1

...

L
2

L
N

D
1

D
2
...

Figure 4.2: Simulation topology.

The effect of equalisation is the first to be considered, given it is necessary to ensure all paths are

continually probed. Equalisation alone however leads to an inefficient use of the network if there is a

mismatch in path capacity, as made apparent in figure 4.1a as congestion occurs on either link. Such

behaviour arises in traditional traffic engineering, which resorts to equalising traffic weighted by local

link capacity. Where a bottleneck is remote and distinct however, such behaviour will lead traffic across

all links to be roughly bound by the capacity of the slowest path, as can be seen between t = 300s

and t = 600s where throughput over the first path is dragged down by congestion on a second path.

Figure 4.1b and 4.1c on the other hand show distinctive behaviour when using a solely conservative or

solely loss-driven approach. Predictably for small values of loss the loss-driven approach overreacts and

flaps between either path. While the net effect of these oscillations does not result in significant losses,

a conservative approach lends itself more naturally to situations where loss is too small to provide a

reliable indicator on path quality. Once loss becomes significant however a conservative approach is

unable to drive traffic in order to balance loss across both paths. More worryingly, a pure conservative

approach demonstrates the wrong dynamics, as highlighted between t = 250s and t = 300s. Despite

being saturated, the balancer continues to push more traffic towards path 1 while the second path remains

under-utilized, dropping its throughput further.

Note that in figure 4.1 the conservative approach obtains higher throughput than its loss-driven

counterpart once loss settles in. While this may seem advantageous, in reality this behaviour will be

shown to be detrimental to the system as a whole: only by balancing loss can social welfare be optimized

[KV05].

4.1.2 Balancing between conservative and loss-driven

Ideally the proposed balancer should adjust between conservative and loss-driven modes for differing

regimes of loss. Equalisation is required in some measure as every path must attract some traffic if it

is not to fall out of use ([KV05], remark 2). If this were not the case, a path with relatively high loss

would never be probed to determine whether congestion has subsided. The remaining two components

must be balanced to be able to respond adequately to loss while not being overly sensitive to statistically

insignificant fluctuations in loss. Let γ replace both βC and βL in (4.3) and adjust between conservative

and loss-driven modes:

f ′i = βE
1

N
+ (1− βE)

(
γ
Ti
T

+ (1− γ)
T 2
i

Ri
∑
j(T

2
j /Rj)

)
. (4.4)

As a result, βE may now vary between [0, 1]. A simple but effective value for γ is to define a

4.1. A model for congestion balancing 50

Conservative

Loss−driven

0.00

0.25

0.50

0.75

1.00

0 300 600 900 1200
Time (s)

γ

(a) γ .

0

4

8

12

16

0 300 600 900 1200
Time (s)

In
te

rv
al

 (
s)

(b) τ ′ .

Figure 4.3: Self-tuning parameters for example in figure 4.1d.

minimum average loss µmin below which there loss is tolerated, and react increasingly as the average

loss µ becomes more significant:

γ =


µmin

µ , if µ > µmin

1, if µ ≤ µmin
(4.5)

This completes the PREFLEX balancer, as shown in figure 4.1d. The evolution of γ for the example

shown in figure 4.1d is shown in figure 4.3(left). The value of µmin was set to 0.005.

4.1.3 Tuning update interval

A further potential issue is how often the flow split should be updated considering the sparseness of loss.

Assume that for a given prefix packet loss is measured over a given time period τ . It would be practical

to tune this τ per prefix according to the accuracy afforded by the loss estimate. If τ is short then only a

very small number of packets will be lost. On the other hand, if τ is long then the control system will be

unable to react quickly to changes. τ should therefore be sufficiently small that an accurate measure of

loss can be obtained. As a result, it is useful to have a rough estimate of the measurement period required

to ensure accurate loss estimates. Since this time period of measurement is per prefix, this must to some

extent reflect the importance a given measurement to the system as a whole. For example, the overall

system should not be held up by a single route with insufficient traffic for an accurate measurement to

be obtained. This will be achieved with the concept of a weighted coefficient of variation.

Let ti be the number of packets transmitted down path i in the time period τ and let li be the

number of packets which were lost in this time period. To prevent the aforementioned divide by zero

issue, li = 1MSS if no packets are lost.

Let pi be the probability that a given packet is lost on path i and assume that packet loss is a

Bernoulli process. An unbiased estimate of pi is p̂i = li/ti. It is important to what follows that p̂i is

only an estimate of pi by “chance” more or fewer packets may have been lost. Given packet loss is

Bernoulli then li has a binomial distribution and its variance σ2 is given by tip(1 − p). The coefficient

of variation (CV), is a dimensionless measure given by the standard deviation over the mean cv = σ/µ.

Keeping the coefficient of variation within some bound δ is a measure of the amount by which an estimate

is likely to vary from the true mean.

4.2. Performance Analysis 51

From trivial definitions of σ and µ, for the number of lost packets on a given prefix i the estimated

CV is ˆcv(i) =
√
tip̂i(1− p̂i)/tip̂i. Let ri be the rate of packet arrival per unit time on i giving ti = riτ .

DefineW the CV weighted by transmitted packets over the prefix asW =
∑
i ti/t

ˆcv(i) where t =
∑
i ti

and this expands as

W =
∑
i

ti
t

√
(1− p̂i)
riτ

.

The “accuracy” of the measurement of pi is determined by the accuracy of li and hence, for the

prefix as a whole by the CV W . The aim now is to pick the time period for the next measurement τ ′

such that W ≤ δ for some δ. Assuming that the loss rates and traffic rates will be the same in the next

time period will give a good indication of how to set τ ′. Therefore for the next time period

δ ≥W =
1√
τ ′

∑
i

ti
t

√
(1− p̂i)
ri

.

This gives an estimated minimum time period to set for the next time period. In order to get weighted

CV of packet loss (and hence loss rate) equal to or below δ the time period τ ′ is bounded by

τ ′ ≥ τ

(
1

δt

∑
i

√
ti − li

)2

.

This equation gives the smallest value to set the time period of measurement to in order that the weighted

coefficient of variation of the loss measurement is a given δ. An upper bound for this value should be set

by operators to ensure that the system periodically updates flow splits when operating under extremely

low loss rates.

While a number of simplifying assumptions have been made, such as modelling loss as Bernoulli,

the time scale choice is not a critical system parameter so long as it provides “good enough” estimates of

loss. The evolution of τ ′ for the example in figure 4.1d is plotted in figure 4.3. As throughput decreases,

the time between updates is inflated to adjust to the lower occurrence of loss events.

4.2 Performance Analysis
This section evaluates PREFLEX through simulation using ns-3 [ns3]. Evaluating traditional traffic en-

gineering methods typically involves abstracting traffic as flow aggregates, making large scale network

performance analysis tractable. PREFLEX however balances traffic using loss rather than load, and fo-

cuses on improving end-user metrics as opposed to minimizing maximum link load. As such, evaluating

the proposed congestion balancer requires simulating end-to-end behaviour of traffic.

4.2.1 Methodology

Experimental validation is performed using the network topology previously displayed in figure 4.2. The

topology links a client domain C to a server domain S through N paths with bottlenecks Li, and total

bandwidth B =
∑
Li. Client C generates G simultaneous HTTP-like requests (or “GETs”) from S

according to a specified distribution, described at the end of this section. As traffic flows from S to C,

the router within S is responsible for balancing traffic over all available paths. This topology is chosen

since it provides multiple independent bottlenecks over which domain S must balance elastic TCP traffic

4.2. Performance Analysis 52

0

G

2

G

0 T

4

T

2

3T

4

T

Time

N
um

be
r

of
 r

eq
ue

st
s

Server

D1

D2

(a) N = 2.

0

G

2

G

0 T

6

T

3

T

2

2T

3

5T

6

T

Time

N
um

be
r

of
 r

eq
ue

st
s

Server

D1

D2

D3

D4

(b) N = 4.

Figure 4.4: Number of requests from C to cross traffic servers Di for different values of N

without any explicit knowledge of the conditions over links Li. Under such conditions traditional traffic

engineering methods may perform poorly since they resort to local information only.

Across simulations, as the number of paths increases, total bandwidth B and the number of si-

multaneous requests G is fixed, providing insight into how efficiently PREFLEX balances traffic as the

granularity with which it can split traffic becomes coarser.

In order to evaluate how PREFLEX shifts traffic in response to loss, additional “dummy” servers

Di are connected to C through bottleneck link Li. The simulation runs for time T and is partitioned into

N + 2 intervals starting on si, in which s0 and sN+1 have no traffic to Di. Starting at time si, client C

generates gi requests to Di according to the same distribution as used to server S. All requests to Di

end at time sN+1. Equation (4.6) sets the start time si for requests to Di as a function of total simulation

time T and number of paths N . Likewise, equation (4.7) sets the number of simultaneous requests gi to

Di as a function of G, the total number of requests to S, and N .

si = T
i

N + 2
(4.6)

θi =
1

N+1−i∑
1

N+1−i
, gi = Gθi. (4.7)

Figure 4.4 illustrates the number of simultaneous gets fromC toDi forN = 2 (used in the example

shown in figure 4.1) and N = 4. Generating cross-traffic in this manner serves two purposes. Firstly,∑
gi = G, so independently of the number of concurrent paths, the maximum load in the system is

2G. However, as the number of paths increases, the fluctuation in load for each path becomes smaller,

stressing the sensitivity with which PREFLEX must balance traffic. Secondly, the number of requests for

each Di over time is the same. Over timescale T , equalisation appears to be an acceptable strategy but

will however be shown to fail to make efficient use of available capacity. This is a fundamental limitation

of offline traffic engineering, which is calculated over long time scales and is unable to adapt as traffic

routinely shifts.

The settings used for all simulations, including those previously shown in figure 4.1, are as follows.

Total simulation time T is set to 1200 seconds, while total bandwidth B is fixed at 240Mbps. The

number of requests G sent from C to S is set to 240. Upon completing, a request is respawned after

4.2. Performance Analysis 53

40

60

80

100

2 3 4 5 6
Number of paths

G
oo

dp
ut

 (
%

)
Server

D6

D5

D4

D3

D2

D1

S

(a) Equalisation.

40

60

80

100

2 3 4 5 6
Number of paths

G
oo

dp
ut

 (
%

)

Server

D6

D5

D4

D3

D2

D1

S

(b) PREFLEX.

Figure 4.5: Goodput relative toB achieved by each server over equal capacity links according to different

balancing strategies.

an idle period following an exponential distribution with a 15s mean. Transfer size follows a Weibull

distribution with an average value of 2MB. While artificial, these values attempt to represent traffic to

a single prefix with a file size that mimics the small but bursty nature of web traffic, which does not

lend itself to being balanced by the end-host, since flows are too short to individually collect reliable

information on network conditions. PREFLEX is configured with βE = 0.05, µmin = 0.01/N and

δ = 0.005.

4.2.2 Varying bottleneck distribution

For the remainder of this section, congestion balancing using PREFLEX will be directly compared to

equalisation, which mimics existing traffic engineering techniques based on hashing flow tuples for path

assignment. A useful reference point in interpreting results is to examine the case where all bottlenecks

share the same bandwidth, Li = B/N . Under such conditions, figure 4.5 shows the goodput, calculated

as the total data transferred to client C by flows completed within T , as a proportion of total link band-

width. Goodput is selected to compare between balancing mechanisms since it is a transport metric and

therefore a more accurate representation of the throughput attained by applications. The bulk of goodput

originates from server S, which is the only multi-homed domain. If traffic is correctly balanced, servers

D1−N should generate the same amount of goodput. While both equalisation and congestion balancing

saturate most available bandwidth, the former leads to disproportionate distribution of goodput amongst

competing traffic. When loss is not equalised over all paths, the amount of goodput achieved by servers

Di differs despite demand being similar.

For the case where all bottlenecks are equal, equalisation can be seen as the optimal static TE

solution, yet both approaches bear similar performance. With no knowledge of topology, link bandwidth

or expected traffic matrices, PREFLEX is able to adequately mimic the performance of the static TE

solution for the case where such an approach is best suited.

Where bottleneck bandwidth is unequal however equalisation is shown to be severely lacking. The

4.2. Performance Analysis 54

40

60

80

100

2 3 4 5 6
Number of paths

G
oo

dp
ut

 (
%

)
Server

D6

D5

D4

D3

D2

D1

S

(a) Equalisation.

40

60

80

100

2 3 4 5 6
Number of paths

G
oo

dp
ut

 (
%

)

Server

D6

D5

D4

D3

D2

D1

S

(b) PREFLEX.

Figure 4.6: Goodput relative to B achieved by each server over unequal capacity links according to

different balancing strategies.

●

●

●

● ●

● ● ● ●

●

● ● ● ●
●

● ● ●

●
●

10

15

20

25

30

2 3 4 5 6
Number of paths

M
ea

n
flo

w
 c

om
pl

et
io

n
tim

e
(s

)

Bandwidth

●

●

Equal

Different

Balancer

Equalisation

PREFLEX

Figure 4.7: Mean flow completion time for equal and differing bottleneck links.

effect of differing bottlenecks is investigated by repeating previous simulations with the same total band-

width B, but with Li set proportionally to B in a similar manner to (4.7), that is Li = θiB. The ensuing

results, shown in figure 4.6, highlight two significant shortcomings of equalisation which PREFLEX

overcomes. Firstly, goodput for S drops asN increases. Unable to realize it is overloading a path, equal-

isation is reduced to sending traffic over each link at approximately the same rate as the most congested

link. In contrast, PREFLEX detects congestion and adapts accordingly. Secondly, the incorrect distri-

bution of traffic due to equalisation in S distorts the goodput of competing traffic. While in PREFLEX

goodput from D1−N is perfectly balanced, with equalisation traffic crossing the most congested links

are directly affected by another domain’s inability to distribute traffic appropriately. It may seem unfair

to judge equalisation for cases where there is a mismatch in link capacity. However, such a mismatch

between link weight and path capacity arises regularly as operators adjust traffic engineering according

to local conditions, with little thought spared for the impact this may have further downstream.

This impact is in turn perceived by users, who experience longer flow completion times, as shown

in figure 4.7. In the equal bandwidth case the flow completion time is similar for both balancers. Where

4.3. Conclusions 55

bandwidth differs however, balancing by congestion outperforms equalisation and maintains a stable

performance even for all six paths. This shows that the algorithm scales well as the number of available

paths increases.

4.3 Conclusions
This chapter introduced congestion balancing using PREFLEX. PREFLEX has been implemented and

evaluated in ns-3 for dynamic traffic scenarios where it balances traffic using different strategies which

are weighted according to the network conditions it detects. In conditions where loss is deemed signifi-

cant, PREFLEX balances congestion between paths. In the absence of sustained loss PREFLEX assigns

traffic based on current throughput. By balancing between these strategies PREFLEX can operate in a

variety of dynamic traffic settings and has been shown to perform as well as the ideal static traffic as-

signment bandwidths are equal. Where bandwidth asymmetry arises, PREFLEX successfully balances

loss with no significant degradation of performance as both the number of paths and inherent complexity

of balancing increases.

Chapter 5

A longitudinal analysis of transit traffic

By readjusting traffic according to end-to-end metrics, PREFLEX is unique in proposing congestion,

rather than just load, as an essential metric for traffic engineering. In the previous chapter necessarily ar-

tificial end-to-end behaviour was used in order to gain insight into how PREFLEX works. Understanding

the extent to which PREFLEX can benefit end-users and networks in practice however requires a deeper

understanding of the inherent characteristics of Internet traffic at large.

This chapter provides a longitudinal analysis of the characteristics of end-to-end Internet traffic,

describing the shifting trends in interdomain traffic as viewed from WIDE, a Japanese academic provider.

Over time, this vantage point is subject to upgrades, changes in routing policy and congestion events, all

of which can hinder the interpretation of data. These limitations are overcome by looking further afield,

searching for clues within shifts in the geographical and topological make-up of inbound and outbound

traffic and how these trends relate to end-to-end performance.

5.1 Related work
Despite their inherent value, longitudinal studies of Internet phenomena are rare. Over its short lifespan

the Internet has been shaped as much by technological change as by political and commercial realities.

This dynamic nature does not lend itself to observational studies where data must be collected and cu-

rated over long periods of time, and has resulted in a scarcity of relevant datasets. What few exceptions

exist often stem from collaborative research efforts, such as CAIDA [CAI] or Oregon Routeviews [rou].

The usefulness of these datasets however can be severely affected by the need for data privacy. The

dissemination of interdomain routing information, where no such requirement exists, has assisted in a

wealth of research on wide ranging topics, from quantifying path diversity [OZPZ09] to locating In-

ternet bottlenecks [HLM+04]. In contrast, longitudinal datasets relating to passive measurements have

nurtured a much smaller community of researchers often focusing on characterizing traffic [FBAF10].

Stripped of the locality contained within IP addresses however, researchers are left unable to relate these

findings to a wider context. Instead, cross-sectional studies characterizing traffic aggregated by loca-

tion are frequently conducted under different contexts [AMSU11], but lack the temporal perspective

only longitudinal studies can afford. Efforts to characterize the spatial properties of traffic over time

[DD11, LIJM+10b, CFEK08] have defined the changing of Internet topology and traffic alike but fall

5.2. Dataset 57

short of relating such shifts with their impact on relevant metrics such as loss or delay.

This chapter builds on a wealth of prior work on understanding Internet traffic and serves as a

reappraisal of significant past contributions. Flow characteristics and TCP behaviour at large are subject

to frequent reassessment [ZBPS02]. Of particular relevance to the current work are passive studies which

delve into the inner mechanisms of TCP. In [JID+04], Jaiswal et al. infer the sender’s congestion window

by identifying the congestion control variant from the behaviour observed during loss recovery. The use

of separate state machines for each variant however proves unscalable given the many flavours of TCP

congestion control which have since been deployed. In [LH06], Lan et al. analyse flows according to

size, duration, rate and burstiness and characterise the observed correlations for heavy-hitters specifically,

uncovering evidence of increased application influence on flow rates and burstiness and consequently

suggest treating flow size and duration as independent dimensions.

One central aspect to the analysis of TCP behaviour is the estimation of RTT from packet capture

data. In addition to SYN-based methods, Shakkotai et al. [SSB+04] evaluate further techniques to esti-

mate the RTT of a unidirectional flow. The rate change method establishes a relation between the RTT

and the increase in sending rate, assuming linear window increases during congestion avoidance. Unfor-

tunately, this assumption no longer holds, both due to the proliferation of less conservative congestion

control algorithms such as CUBIC [HRX08], and due to application-driven flow control. An alternative

is the use of frequency-domain techniques [VLL05, LF05, QGM+09], which are a natural fit given the

self-clocking nature of TCP. However, a common difficulty with the application of spectral analysis is

extracting the fundamental frequency which corresponds to the RTT in the presence of noise. In apply-

ing the Fourier transform to inter-packet arrival times, for example, Qian et al. [QGM+09] note that less

than half of all flows have distinguishable flow clocks; likewise, the Fast Fourier Transform (FFT)-based

RTT recovery was found to be unreliable even after pre-processing available data to enhance inherent

periodicities.

Finally, it is important to elucidate what changes in traffic properties are intrinsic to TCP and data

transfer, and which ones arise from large-scale changes in the AS-level topology of the Internet. In the

decade since publication of [ZBPS02], the Internet has undergone significant changes, shifting from a

broadly hierarchical form to a flatter, more interconnected structure [LIJM+10a, ACF+12]. Given the

longitudinal nature of this chapter and its focus on interdomain traffic in particular, the insights provided

by these studies on the macroscopic effects of content consolidation are discernible within the studied

dataset, and as such are a source of validation for many of the observations herein.

5.2 Dataset
This section provides an overview of the datasets used in this work and some of the data processing

required before approaching the longitudinal study of Internet traffic rate limiting. The dataset used is

composed from the original, un-anonymised traffic traces from the Measurement and Analysis of the

WIDE Internet (MAWI) dataset [CMK00], a set of daily packet captures from the WIDE backbone

network which provides connectivity to universities and research institutes in Japan. Traffic is collected

daily for 15 minutes starting at 14:00 JST. Although this dataset extends back largely uninterrupted

5.2. Dataset 58

from late 2001, the present work focuses on just over five years of data following a network upgrade to

the monitored link on October 2006. The monitored link carries mostly trans-Pacific commodity traffic

between WIDE customers and non-Japanese commercial networks. Traffic towards WIDE is referred to

as inbound traffic, whereas traffic originating from within WIDE is referred to as outbound traffic.

YEAR DAYS

TCP DATA

FLOWS (×103)

TRAFFIC (TB) UNIQUE (×103)

IN OUT AS PREFIXES

2006 91 20.52 0.43 0.45 10.90 56.86

2007 350 102.56 2.11 2.49 17.21 113.79

2008 358 112.26 2.43 2.10 24.74 156.54

2009 364 113.97 2.48 2.53 19.71 143.87

2010 365 113.70 2.58 3.43 20.38 148.03

2011 358 114.74 3.44 5.14 19.99 140.56

TOTAL 1886 5777.55 13.50 16.14 34.12 341.22

Table 5.1: Overview of traced MAWI dataset.

A preliminary overview of the dataset used is provided in table 5.1. In total, 5.7 billion flows con-

taining data are traced over five largely uninterrupted years; this represents approximately 30 terabytes

of TCP traffic. For the purposes of this work, most analysis will focus on inbound traffic, 60% to 80%

of which originates from port 80, referring only to analysis of outbound traffic when contextualizing

findings. Given the sender side plays a critical role in shaping traffic, analysing traffic for which the

source is restricted to a small set of networks within Japan is of limited use in accurately depicting traffic

trends at large. Hosts within Japan are instead fixed as traffic sinks, thus sharing a similar perspective on

inbound traffic as many other similarly sized networks.

5.2.1 Tracing TCP Metrics

All TCP flows are reassembled and analysed for each daily trace. In addition to the five tuple used to

define each connection, two additional restrictions are imposed: a contiguous sequence number space

and a three minute timeout. These restrictions are helpful to deal with port reuse and unterminated flows

respectively. Although the total number of TCP flows increased dramatically in 2011, the number of

flows for which data payload was observed has remained stable, averaging over 100 million data flows

traced per year.

There is much prior work with regards to reconstructing TCP flow from passive measurements

and using this information to understand the end-to-end properties of traffic [MMC00, JID+07, RKS07,

SSB+04]. However, the MAWI traces impose two constraints which require careful consideration, and

ultimately led to the use of a custom TCP tracer. The first is the proportion of bidirectional flows, where

both forward and reverse path are seen. In the dataset used this fluctuates between 40% and 60% over

five years. Most available TCP tracers either ignore or are inadequate at processing unidirectional flows.

The second is the short duration of each individual trace file. At only 15 minutes of line-rate data capture

5.2. Dataset 59

per day, it is wasteful to ignore flows which are not complete. Although the number of flows for which a

SYN and FIN in either direction is observed has remained consistently high until late 2011, these flows

are normally mice, i.e. flows that tend to be brief and which carry little traffic individually. In contrast,

most elephants (flows that carry significant traffic individually) have durations that exceed that of each

trace file.

Loss is inferred by accounting for retransmissions in the upstream data and out-of-order packets

in downstream data; for the remainder of the paper the term end-to-end loss will refer to the sum of

out-of-order and retransmitted data bytes over the total data bytes in a given direction. Anecdotally,

this was found to be an adequate indicator of loss — with the exception of hanging TCP connections.

In such cases where connectivity is lost, a host will proceed to retransmit packets while performing

an exponential back-off. Although this results in negligible overall traffic, it can significantly skew

the inferred loss ratio for uncommon destinations for which little traffic exists. To account for these

cases, a 3-second timeout on retransmissions was imposed, after which the congestion feedback loop is

considered to be broken.

Each daily trace in the dataset is processed from a packet level capture into a collection of flow level

statistics, providing insight into the end-to-end characteristics of traffic. However, since a core objective

of this work is to augment this time-based information with data describing the endpoints of each flow,

aggregating by location is also required.

5.2.2 Aggregating by Location

Location information is added by mapping the original source and destination IP addresses to its ge-

ographical and topological counterpoints. The routeviews archives [rou] are used to reconstruct the

mapping between each IP and both AS and network prefix; bi-hourly dumps of BGP Routing Informa-

tion Bases (RIBs) are available in the WIDE archives since mid 2003. A daily RIB is reconstructed based

on the views provided by contributing ASes, in particular IIJ and APNIC. Since there is no record of

local policy, exact routes are not disclosed and as such there is no prior knowledge of the route taken by

packets; this however does not hinder the ability to consistently map IPs to ASes. While discrepancies

in AS destinations exist between different routeviews contributors, this happens almost exclusively on

prefixes for which no actual traffic is seen.

Mapping IP to country is done through the use of GeoLite [max12], a commercial geolocation

database. While the accuracy of this solution is often disputed, locating traffic at a fine granularity is not

a pressing concern. Most geographic emphasis will be placed on capturing macroscopic shifts in time

at a national level, for which Geolite proves adequate. The archive for geolocation data only extends

to 2009, before which the earliest match must be used. Additionally, the administrative mapping up

until mid 2009 for a destination or source AS is verified to have remained the same in the relevant

Routing Information Registrar (RIR) archives in order for a flow to be assigned a geographical location.

After associating flows to country, region, AS and network prefix for both source and destination IPs,

flow statistics are aggregated over each location identifier. This generates a daily collection of location

identifiers and associated flow properties, from which the geographic and topological properties of the

5.3. RTT estimation 60

dataset can be sketched over time.

5.3 RTT estimation
Building on prior work presented in section 5.1, this section proposes an algorithm that scalably recovers

the RTT from one-directional traffic traces. Although RTT estimation is a difficult problem, simplifying

assumptions can be made. For the MAWI dataset most RTTs are relatively large, with the closest neigh-

bouring country, South Korea, roughly 40ms away. By only processing bidirectional traffic from Japan,

the expected RTT range can be reduced for all other traffic. The recovery mechanism then enhances the

natural periodicity of traces and scalably constructs flights associated with specific application and pro-

tocol behaviour. In the following the mechanisms required by these two goals are described. In normal

operation, many TCP operations involve request-response cycles between two endpoints in which the

RTT T provides a natural clock. Hence, the most natural way to estimate RTT from TCP traces is to

correlate requests and responses exchanged in both directions. If only one direction of data is observed

however, T cannot be directly observed. Instead, it must be estimated from the way in which TCP

packets cluster in time due to the batching of request-response operations.

The TCP cwnd determines the number of unacknowledged bytes that a TCP flow may maintain

at any point in time. This can be referred to as bytes in flight because they are in transit between the

sender S and the receiver R; an equivalent definition applies for the number of packets in flight. Once

S has transmitted cwnd data bytes, it will refrain from transmitting more until either some bytes are

acknowledged by R or cwnd is increased by the sender. In the absence of losses, neither of these events

can happen until a TCP ACK is received; this immediately reduces the number of unacknowledged

bytes, but may also lead to a significant cwnd increase (during e.g. slow start). In the presence of losses,

however, bytes can be re-sent if a packet is timed out and considered lost; in this case, the number of

unacknowledged bytes is reduced.

The main difficulty associated with one-sided TCP flow reconstruction is as follows. Let t1, t2, . . .

be a set of times at which packets p1, p2, . . . were observed at S en route to R. Suppose that a packet

pj of size b is observed at time tj . In addition, suppose that approximately one RTT T later, the sender

S receives an ACK aj from R for the b bytes of pj . At this point, the TCP stack in S will decrease

the number of unacknowledged bytes by b, thus opening the possibility for sending additional traffic

to R. This can lead to another packet pk to be transmitted; let this packet be observed at time tk as it

is sent towards R. Assuming that processing delay is insignificant, the RTT experienced by pj can be

approximated as T ≈ tk − tj . Now consider what happens if packets are only observed in the S → R

direction. Under such conditions, it is not possible to ascertain whether pk was sent explicitly as a result

of S receiving the unobserved ACK aj , or whether it was sent as a result of an ACK ai associated with

a previous packet pi rather than with pj . If, however, a packet pl is eventually observed that did result

from the reception of aj , the RTT can be estimated as T ≈ tl − tj with tl > tk. Following this same

reasoning, approximately one RTT later a packet pm will be observed for which 2T ≈ tm − tj ; this can

potentially continue for as long S has data to send andR continues sending ACKs. This is the underlying

reason that RTT-related periodic regularities arise when considering the timestamps of observed packets

5.3. RTT estimation 61

0

100

200

300

400

500

0 250 500 750 1000
Time (ms)

F
re

qu
en

cy

Figure 5.1: H(t) for example flow. The horizontal line delimits H while the highlighted bin denotes the

bidirectional RTTs estimate.

[QGM+09].

The reasoning above is at the heart of the proposed algorithm to improve RTT recovery by enhanc-

ing packet stream periodicity. Assume that a packet pj is observed at time tj . Considering the set Tj
of all values of ∆t = tk − tj for every k > j, it is apparent that it will include estimates not only for

the RTT T , but also for all its multiples 2T, 3T, . . . If tl − tk ≈ T and tk − tj ≈ T then it follows that

tl − tj = 2T , and this value will also be included in Tj .

By maintaining a set Tj for every packet pj observed, at least some of its values will correspond

to estimations of multiples of the RTT. It then follows that by creating a set T that includes values

calculated starting from every packet pj so that T = ∪jTj , numerous estimates for 2T, 3T, . . . will also

be included. Hence, the probability density function H(t) of the values in T should show peaks around

multiples of the RTT (see Figure 5.1).

The algorithmic recovery of T from H(t) presents additional challenges. In particular, H(t) may

include a large number of RTT multiples, and a peak will be found for all of them. Crucially, all these

peaks may be of comparable magnitude, complicating the task of selecting a single peak. Moreover,

these peaks need not be very pronounced, with histogram bins in close proximity of the peaks have very

similar values as the peak itself. As such, taking RTT candidates directly fromH(t) may result in a large

set of similarly-valued bins situated around a peaks at multiples of the RTT.

Three recovery algorithms for T are attempted. First, as a baseline, the highest peak in H(t)

is selected as a candidate for T . In addition, expanding upon the work of Qian et al. [QGM+09] a

frequency-domain representation of H(t) is used to identify T . This is done by selecting the highest

peak of |Ĥ(ω)|2, the energy spectral density of H(t) (i.e. the norm squared of the Fourier transform

of H(t)). Finally, a custom utility-based technique that operates directly on H(t) is proposed which

achieves superior performance to both of the aforementioned methods.

5.3. RTT estimation 62

0.00

0.25

0.50

0.75

1.00

0.1 1.0 10.0
Ratio of median RTT (bidirectional)

R
at

io
 o

f f
lo

w
s Method

●

●

●

Maximum peak

Utility−based

FFT peak

Figure 5.2: Accuracy of RTT estimator when compared to the median value of bidirectional estimate.

5.3.1 Utility-Based RTT Recovery

This method relies not on the identification of periodicities, but on explicitly matching experimentally

found signatures. To this end, we consider the peaks ofH(t), which are then considered RTT candidates.

However, trivial discriminators (such as simply selecting the highest peak) are not reliable. In this case,

it was found experimentally that repeatable peaks and troughs also occur at multiples and sub-multiples

of T , with the most important ones being T
3 , T2 , T and 2T . We design this detection algorithm around

the idea that a given pattern of peaks and troughs can identify T .

If we define H as the mean height of H(t), we can define a per-peak utility function p(t) so that

p(t) = 1.0− exp

(
−2.0

(
H(t)

H

))
.

This function has several advantageous properties: it is 0 if H(t) is zero, 1 if H(t) is infinite, and 0.5

if H(t) = H . In other words it is a measure of the peakiness of the data, with p = 1 identifying an

infinitely high peak, p = 0 identifying an empty histogram bin (trough), and p = 1
2 implying that H(t)

is of exactly average height at that point. We can then score each candidate using the following utility

function:

P (t) = 1.5p(t) + p(2t)− p
(
t

2

)
− p

(
t

3

)
.

That is, the candidate RTT t scores highly if it is itself a peak, if it has a peak at a multiple 2t, and

if it also manifests troughs at sub multiples T
2 and T

3 . The factor of 1.5 was added after observations

showed that the peak at T was the most important factor in determining whether a candidate was the

true RTT. Similarly, additional multiples and sub multiples were excluded as they showed very limited

discriminating power experimentally.

5.4. Macroscopic traffic trends 63

SAMPLE DATA

PEAK (%) UTILITY (%)

BELOW ABOVE BELOW ABOVE

RECEIVER SIDE

flow < 10MB 4.31 9.13 4.58 6.35

flow > 10MB 6.72 6.43 4.97 5.33

SENDER SIDE

flow < 10MB 2.94 8.37 3.29 4.80

flow > 10MB 6.41 9.06 5.40 11.06

Table 5.2: Performance of peak-based and utility-based RTT recovery algorithms, showing proportion

of flows for each sample dataset with estimates below and above bidirectional estimate.

5.3.2 Comparing recovery algorithms

As described in section 5.3, H(t) is calculated in such a way that RTT periodicity is amplified. This

means that FFT-based techniques could potentially perform better on H(t) than on the packet stream

with no pre-processing. However, this is complicated not only because H(t) contains periodicities at

multiples of T , but also discontinuities that generate harmonics at frequency multiples of the RTT fun-

damental. Hence, although the FFT |Ĥ(ω)| of H(t) is much cleaner than that of the packet inter arrival

time series on its own, its maximum peak rarely coincides exactly with the RTT clock (this corroborates

reports by Qian et al. [QGM+09]). Thus, applying the FFT leads to another peak detection problem in

which the RTT fundamental needs to be extricated from its harmonics and sub-harmonics. The trivial

solution to this problem, the application of a bandpass filter around the RTT frequency, is of course

infeasible because the bandwidth and centring of such a filter depend on the RTT which is itself un-

known. The utility-based algorithm described in Section 5.3.1 can hence be applied in either the time

domain or the frequency domain; we chose to do it on the former on the interest of expediency and lower

computational cost.

The performance of the analysed RTT recovery mechanisms is presented in Table 5.2, that shows

the percentage of total flows below and above the RTT range given by the bidirectional estimates. We

separate things for inbound traffic (where we are positioned at the receiver side) and outbound traffic

(where we are positioned at the sender side). The utility-based algorithm is particularly useful to address

RTT underestimation for flows over 10MB in size, which is our main objective since precisely that kind

of estimation error would interfere with our ability to correctly decouple application behaviour from

RTT-scale dynamics.

5.4 Macroscopic traffic trends
Over a five year period, changes in routing and application popularity have continually redefined the

nature of traffic under observation. This section provides a macroscopic view of these shifting trends.

Figure 5.3 displays the average throughput and loss ratio for traffic in either direction, calculated for TCP

traffic only, smoothed on a weekly basis.

For inbound traffic, shown in figure 5.3a, two routing changes internal to WIDE had significant

5.4. Macroscopic traffic trends 64

Internal

 changes

Tohoku

 earthquake

0

5

10

15

20

2007 2008 2009 2010 2011 2012
Date

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
B

/s
)

Flow size >100MB (10MB, 100MB] <10MB

0%

2%

4%

6%

8%

2007 2008 2009 2010 2011 2012
Date

R
at

io
 o

f t
ot

al
 tr

af
fic

Out−of−order Retransmission

(a) Inbound traffic.

0

5

10

15

20

2007 2008 2009 2010 2011 2012
Date

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
B

/s
)

Flow size >100MB (10MB, 100MB] <10MB

0%

2%

4%

6%

8%

2007 2008 2009 2010 2011 2012
Date

R
at

io
 o

f t
ot

al
 tr

af
fic

Out−of−order Retransmission

(b) Outbound traffic.

Figure 5.3: Longitudinal evolution of average throughput and loss for the MAWI dataset.

5.4. Macroscopic traffic trends 65

impact on overall traffic, and are consequently highlighted. The first, performed towards the end of

2008, diverted most of the inbound traffic from national sources away from the monitored transit link,

resulting in a reduction of traffic. This event was preceded by increased congestion downstream from

the monitoring point. The second, in early 2009, saw a significant increase in regional traffic from Asian

neighbours, and was reverted approximately six months later. During this period aggregate end-to-end

loss rates increased as a result. While this is mostly due to the higher proportion of upstream congestion

for traffic from Taiwan and China in particular, most traffic was adversely affected by the increased

utilisation, suggesting that the transit link itself may have been a bottleneck during this period. Finally,

the impact of the Tohuku earthquake resulted in a noticeable break in demand coinciding with the start

of the Japanese fiscal year in April, in which traffic traditionally ramps up.

For reference, relevant metrics for outbound traffic are also shown in figure 5.3b. Compared to

inbound traffic, outbound traffic is subject to higher rates of out-of-sequence packets. The proportion

of out-of-order packets in particular is large for extended periods of time at the end of both 2007 and

2011, ending abruptly. This either suggests that the internal network was congested and eventually

upgraded, or that load-balancing mechanisms leading to increased network reordering were employed

and then decommissioned. The higher rate of retransmissions on the other hand is largely related to the

geographic differences between traffic sources and traffic sinks in the MAWI dataset.

5.4.1 Geographic distribution

This skew in the location of end points is apparent in table 5.3, which highlights the geographic distri-

bution of both inbound and outbound traffic for the observed time period.

The majority of traffic flows to and from the United States, which has increased its share of band-

width in either direction over the past five years. The proportion of traffic flowing from the United States

is particularly high, accounting for almost 70% of inbound traffic in 2011. While this may foreshadow

an increased concentration of traffic from the United States, it should primarily be viewed as a reflection

of routing policy, with regional traffic being diverted to alternate routes as Japan became increasingly

interconnected to its neighbours. Of particular importance is the routing change at the end of 2008,

which resulted in a sharp drop in inbound traffic from within Japan, as highlighted in figure 5.3a. This

event had a profound influence in shaping not only the distribution of traffic, but also delay as shall be

observed in section 5.4.3.

Further geographic shifts in the inbound direction are apparent when breaking down US traffic by

state. The proportion of traffic originating from California has decreased over time, dropping from 55%

of total US traffic in 2007 to only 35% in 2011. In its place, a larger set of states have emerged as content

providers, with New Jersey, Florida and Virginia contributing over a quarter of all traffic originating

within the US by 2011.

In the outbound direction, the geographic distribution of traffic is less skewed, with a greater pro-

portion of traffic flowing towards Japan and China in particular. Traffic to the Republic of Korea pro-

gressively increases from 2010 onwards due to successive routing changes. Combined with the drop in

traffic towards China, this accounts for much of the drop in aggregate loss rates since 2010, as observable

5.4. Macroscopic traffic trends 66

COUNTRY

OUTBOUND TRAFFIC (%) INBOUND TRAFFIC (%)

2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

UNITED STATES 27.3 31.3 29.3 36.4 35.7 45.7 41.5 53.3 65.1 67.1

CALIFORNIA 39.0 61.8 63.5 53.8 50.6 55.7 47.9 46.7 24.9 34.9

TEXAS 5.8 4.3 4.1 2.4 13.9 7.0 12.0 5.8 7.1 5.6

COLORADO 1.9 1.2 0.6 8.5 2.8 4.9 6.0 5.9 9.7 5.8

VIRGINIA 1.9 1.0 0.8 0.4 0.6 1.2 3.0 14.1 13.1 8.3

WASHINGTON 4.0 2.9 3.5 6.1 6.6 0.9 5.7 3.5 3.0 2.0

NEW JERSEY 2.8 1.5 0.7 1.1 1.9 1.0 1.8 1.6 4.9 13.6

MASSACHUSETTS 1.6 1.1 0.9 6.1 4.9 5.4 2.1 1.8 1.6 2.0

FLORIDA 3.1 2.3 1.3 1.1 0.9 1.0 0.4 0.4 8.5 7.9

JAPAN 11.6 15.4 17.7 16.7 16.1 33.8 32.2 7.3 8.1 11.5

CHINA 7.9 20.5 17.8 10.3 5.9 2.5 5.3 6.3 4.6 3.1

KOREA, REPUBLIC OF 5.3 1.3 2.1 7.8 23.8 4.7 5.1 3.2 1.1 0.5

GERMANY 2.2 1.7 1.6 1.0 0.6 3.0 6.1 5.3 5.5 1.4

TAIWAN 2.7 1.3 4.0 3.6 2.7 0.8 0.9 10.9 0.9 0.4

NETHERLANDS 0.4 0.4 0.5 0.3 0.4 0.9 1.0 4.1 6.2 6.9

INDIA 2.8 3.3 4.8 3.3 2.0 0.3 0.1 0.0 0.2 0.0

FRANCE 1.2 1.1 0.9 0.9 0.9 1.6 1.2 2.6 3.4 1.7

UNITED KINGDOM 1.1 1.0 1.0 0.9 0.7 2.5 2.2 1.6 1.3 1.3

Table 5.3: Percentage of inbound and outbound traffic by country. U.S. state values are relative to total

national traffic.

in figure 5.3b. European destinations overall have a small proportion of outgoing traffic, which appears

to be shrinking over time. The most significant factor for the discrepancy between inbound and out-

bound traffic for Europe as a whole is the time zone difference, as traffic is measured at 05:00GMT. This

however does not account for why outbound traffic overall has been falling. Since most outbound traffic

towards Europe at the time of measurement is likely to be scheduled transfers with no human interven-

tion, a plausible explanation for this trend is the gradual shift away from file-sharing using peer-to-peer

applications. This is further corroborated by the rise of hosting solutions which facilitate file-sharing, as

shall become evident when analyzing the breakdown of traffic by AS.

5.4.2 AS-level distribution

It has been widely noted that interdomain traffic has significantly changed over the past decade, with an

increasing proportion of traffic flowing to and from a dwindling set of both large content providers and

consumer networks. Such traffic consolidation is most apparent at the AS level, where a direct mapping

to a commercial entity is forthcoming.

In the inbound direction traffic has remained consistently concentrated in the top 100 ASes account-

ing for approximately 90% of all data received, as shown by the cumulative distribution of inbound traffic

by AS in 5.4a. There is a visible drop in concentration amongst the top ASes between 2008 and 2009 as

a wide range of Japanese prefixes were rerouted through a different ingress. This shift is clarified in table

5.4, which lists the top ten ASes by received data for 2007, 2009 and 2011. While in 2007 traffic was

5.4. Macroscopic traffic trends 67

R
a

ti
o

 o
f

re
c
e

iv
e

d
 d

a
ta

Number of ASes

Year

2007

2008

2009

2010

2011

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

(a)

R
a

ti
o

 o
f

s
e

n
t
d

a
ta

Number of ASes

Year

2007

2008

2009

2010

2011

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

(b)

Figure 5.4: CDF of (a) inbound and (b) outbound traffic by AS.

ASN AS NAME %

2914 NTT 29.92

36561 YOUTUBE 15.89

15169 GOOGLE 3.80

22822 LIMELIGHT 3.70

174 COGENT 3.03

9318 HANARO 2.46

3356 LEVEL 3 1.97

20940 AKAMAI 1.53

19166 ACRONOC 1.47

30212 DTI SERVICES 1.05

(a) 2007.

ASN AS NAME %

3462 HINET 9.78

15169 GOOGLE 8.64

43515 GOOGLE (YOUTUBE) 7.92

2914 NTT 5.89

46742 CARPATHIA (LAX) 4.17

4766 KOREA TELECOM 2.74

4134 CHINA TELECOM 2.62

3356 LEVEL 3 2.14

4837 CHINA UNICOM 2.10

36561 YOUTUBE 1.98

(b) 2009.

ASN AS NAME %

2914 NTT 10.79

20473 CHOOPA 8.86

43515 GOOGLE (YOUTUBE) 8.65

35415 WEBAZILLA 6.01

40824 WZ COMM. 4.79

15169 GOOGLE 4.66

40263 FC2 3.61

30212 DTI SERVICES 2.68

16265 LEASEWEB 2.56

29748 CARPATHIA (VA) 2.05

(c) 2011.

Table 5.4: Top 10 ASes for inbound traffic by year.

ASN AS NAME %

15169 GOOGLE 3.94

7132 SBIS AT&T 3.23

4134 CHINA TELECOM 3.14

10013 FREEBIT 2.91

4788 TM NET 2.37

9318 HANARO 2.21

9595 XEPHION NTT 2.09

9304 HUTCHISON AS 2.00

2914 NTT 1.90

4837 CHINA UNICOM 1.72

(a) 2007.

ASN AS NAME %

15169 GOOGLE 11.55

2510 INFOWEB 11.32

4134 CHINA TELECOM 9.10

2518 BIGLOBE NEC 6.00

3462 HINET 3.78

4837 CHINA UNICOM 3.01

14778 INKTOMI 2.04

7132 SBIS AT&T 1.51

36647 YAHOO 1.14

24560 AIRTEL 1.13

(b) 2009.

ASN AS NAME %

4766 KOREA TELECOM 11.39

15169 GOOGLE 8.66

2510 INFOWEB 5.93

3549 GLOBAL CROSSING 5.38

9318 HANARO 4.76

36647 YAHOO 4.63

2518 BIGLOBE NEC 4.23

46179 MEDIAFIRE 3.42

17858 KONYANG UNIV. 2.77

3462 HINET 2.68

(c) 2011.

Table 5.5: Top 10 ASes for outbound traffic by year.

5.4. Macroscopic traffic trends 68

A
v
e
ra

g
e

 R
T

T
 (

m
s
)

Number of ASes

Year

2007
2008
2009
2010
2011

300

500

 100

 1000

 0 200 400 600 800 1000

(a)

A
v
e
ra

g
e

 R
T

T
 (

m
s
)

Number of ASes

Year

2007
2008
2009
2010
2011

300

500

 100

 1000

 0 200 400 600 800 1000

(b)

Figure 5.5: CDF of mean RTT by AS for (a) inbound and (b) outbound traffic.

already consolidated across a small set of ASes, a significant portion of transit traffic was still Asian:

most traffic from NTT and Limelight originated from within Japan. Such traffic has gradually been

pushed away from transit by 2011. Large carriers such as Cogent, Level3, Hanaro, China Telecom have

also seen their importance diluted by ASes known to harbour OCH services such as Choopa, Webazilla,

WZ Communications, Carpathia and LeaseWeb. Many of the hosted websites facilitate the distribution

of copyrighted content, and as such are not capable of growing large enough to expand beyond hosted

infrastructure without risking prosecution.

For outbound traffic, shown in figure 5.4b, consolidation has been much more perceptible. For the

top 10 ASes alone, the proportion of traffic has more than doubled between 2007 and 2011. By 2011, the

distribution of traffic amongst ASes for inbound and outbound traffic bears a striking similarity but the

nature of this concentration is markedly different, as made apparent by table 5.5. Despite the increased

importance of content providers and OCH services such as Google, Yahoo and Mediafire, significant

portions of outgoing traffic continue to flow toward eyeball ISPs such as Korea Telecom, Infoweb, Global

Crossing and Hanaro.

Overall, the observed traffic patterns match the insights provided by Labovitz et al. on the changing

nature of interdomain traffic in [LIJM+10a], but highlight that such trends have occurred at different

paces depending on the direction of traffic. Inbound traffic showed strong signs of concentration as early

as 2007, whereas outbound traffic has only become dominated by large consumer networks and regional

providers more recently. The implications for transit traffic from an Asian perspective is less intuitive:

with the increased adoption of CDNs and IXPs, more transit traffic is being retrieved from further away

as content in the United States shifts eastward.

5.4.3 Delay

While understanding where traffic flows to and from is of great value at an operational, commercial and

often political level, it portrays a small part of a wider picture. For end-users it is of less concern where

content is being retrieved from or routed through compared to how long it takes.

Intuitively delay should decrease over time as the Internet becomes more interconnected, resulting

in less path stretch, and access technology improves, cutting down queuing delay in particular. This is

5.4. Macroscopic traffic trends 69

W
e

ig
h
te

d
 a

v
e

ra
g

e
 R

T
T

 (
m

s
)

Number of ASes

Year
2007
2008
2009
2010
2011

 0

 100

 200

 300

10
0

10
1

10
2

10
3

(a)

W
e

ig
h
te

d
 a

v
e

ra
g

e
 R

T
T

 (
m

s
)

Number of ASes

Year
2007
2008
2009
2010
2011

 0

 100

 200

 300

10
0

10
1

10
2

10
3

(b)

Figure 5.6: CDF of weighted RTT by AS for (a) inbound and (b) outbound traffic.

partially confirmed by figure 5.5, which displays the mean delay distribution for traffic in either direction.

Given the long-tailed nature of traffic, many ASes have a limited number of RTT samples. As such, only

the thousand most significant ASes in either direction are used to plot the respective CDF.

As with traffic distributions, the plots once again illustrate the same overall trend in subtly different

patterns. While latency has dropped across the board, the rate of improvement is markedly different.

Taking the median of both plots as a reference point, delay has dropped by 20ms between 2009 and

2011 for inbound traffic, nearly half the equivalent decrease for outbound traffic. The absolute values in

both cases are still disparate: over 90% of ASes are reached within a round trip time of approximately

400ms when ranked by inbound traffic, whereas the equivalent value for outbound traffic is almost

200ms higher. For inbound traffic the average RTT is low enough that geographical properties are

clearly visible. A first plateau close to 100ms is apparent for traffic to the American west coast, while

traffic to European destinations is clustered close to 250ms. Tellingly, this second plateau seems to be

receding. When taken in conjunction with the geographic distribution of traffic presented in table 5.3

this seems to confirm the reduction in the number of sources within Europe.

A pertinent question at this point is in trying to understand how delay relates to traffic volumes.

Given the different nature of stakeholders monopolizing traffic at either end of the spectrum, what can

be said about the evolution of delay in either case? Figure 5.6 plots the cumulative distribution of the

average RTT weighted by the respective volume of traffic. In interpreting such plots one should keep

in mind that they provide a rough indicator of the average delay to be expected if one were to sample a

packet belonging to the top N sources or destinations. As N increases, the resulting value approaches

the average RTT for all traffic in a given direction.

Inbound traffic by AS highlights an expected rise in delay between 2008 and 2009, as both NTT and

Limelight are replaced by more distant sources. However, from 2009 onwards the overall delay remains

remarkably stable. While the cumulative distribution function of RTT shows improvement in delay at

the tail, this results in very little improvement overall as traffic is dominated by a handful of entities.

Two explanations emerge for this behaviour. The first stems from the changing nature of the traffic

being sampled. While functionally NTT represents the same entity over time, the traffic under obser-

5.4. Macroscopic traffic trends 70

10
2

10
3

10
2

10
3

D
e

la
y
 (

2
0

0
7
)

[m
s
]

Delay (2009) [ms]

Asia
Europe

North America
South America

Africa
Oceania

(a) 2007/2009.

10
2

10
3

10
2

10
3

D
e

la
y
 (

2
0

0
9
)

[m
s
]

Delay (2011) [ms]

Asia
Europe

North America
South America

Africa
Oceania

(b) 2009/2011.

Figure 5.7: Scatter plot of mean RTT by country grouped by continent.

vation is very different. The local view of traffic has been stretched further afield as data has been

increasingly exchanged over peering links, particularly at a national level. This is particularly noticeable

in figure 5.6a, where the average delay towards NTT, the most significant AS for inbound traffic in both

2007 and 2011, increased by approximately 100ms. This does not represent a degradation in quality of

service, but rather a change in where traffic is flowing from within the AS.

A further reason relates to the placement of content. As previously established in table 5.3, there

appears to be a migration of content away from California. OCH providers such as Lemuria, based in

Florida, Mediafire, based in Texas and District of Columbia and Carpathia, based in Virginia, are all

contained within the top 20 ASes and have shifted traffic further from locations which had traditionally

benefited from low latency as viewed from Japan.

Analyzing the outbound traffic seemingly reveals the opposite effect, with the average weighted

RTT dropping by over 100ms. Once more, there is no single reason which accounts for the entirety

of this effect. In 2007 many of the top destination ASes were in developing Asian countries, where

infrastructure has improved greatly since. Improvements in routing to countries such as China and the

Republic of Korea have also had a positive net effect. This is visible in figure 5.7, where the average

RTT aggregated by country is plotted. For clarity, countries for which RTT estimates are available for

less than 50 days in a year are filtered out. Between 2007 and 2009 most Asian and European countries

experience significant improvements in RTT. The minor exceptions are typically countries for which

delay was already comparatively low. By 2011, latency to most countries had been reduced below

500ms.

Finally, many of the very same companies which have had an effect of increasing RTT for inbound

traffic, such as Mediafire or Ustream.tv, are also amongst the top destinations of traffic. It is interesting

to note that as of 2011, data travelling from the top 1000 AS traffic sources was expected to experience

the same latency as data travelling towards the 1000 most popular AS traffic destinations. In 2007, the

value was two times higher for outgoing traffic. Traffic downstream is moving further away as content is

not only placed closer to consumers and bypasses the transit link entirely, but also moves deeper within

the United States, whereas traffic upstream has been drawn closer.

Chapter 6

TCP flow rate limitations

Providing a macroscopic view on where traffic originates from, and in what quantity, can be achieved

by simply binning packets into flows and accumulating byte counts over geographical or topological

locations. Uncovering application layer characteristics (i.e. how traffic is sent) is a more complex prob-

lem that requires additional methods to reverse engineer transport behaviour. This chapter builds on

the analysis of the MAWI dataset presented in chapter 5, focusing on the longitudinal evolution of TCP

behaviour. TCP plays a central role in mediating between application needs and network capacity. In

the absence of congestion, TCP is responsible for increasing sending rates in a bid to make efficient use

of available bandwidth. Conversely, should congestion arise, TCP is expected to reduce its rate. This

form of congestion control embedded in TCP is largely credited with performing resource allocation

across the Internet and averting congestion collapse. But to what extent does this behaviour describe

TCP throughput in practice?

For some types of traffic, throughput is not strictly dictated by the outcome of congestion con-

trol. For one, inelastic traffic such as streaming media typically has bounds on the amount of capacity

required. Beyond a certain throughput rate, bandwidth probing by TCP is often unnecessary and oc-

casionally harmful. Since TCP drives itself relentlessly towards congestion, real-time applications may

suffer from increased latency and jitter. Furthermore, content providers may wish to avoid exceeding

the streaming rate for content which may not be consumed in its entirety due to user behaviour, for ex-

ample channel hopping for video streaming services [RCG+10], or client limitations, such as buffering

restrictions on mobile devices [RLL+11]. Such forms of application pacing are often also applied to

elastic traffic. In some cases, high throughput is perceived and subsequently marketed as a value added

service. One-click hosting services such Rapidshare and Megaupload [AMD09, SCBRSP12] actively

monetise access to large amounts of content both through online advertising and subscription models to

bandwidth tiers. Conversely, file sharing applications such as Bittorrent and other peer-to-peer clients

allow users to rate limit transfers in order to reduce impact on competing traffic, or to provide incentives

for participation [GCX+05].

Even beyond such application behaviour, flows may still be constrained by factors not pertaining

directly to TCP congestion control. The transport layer is subject to strict bounds within which it can

operate, potentially impeded by socket buffer sizes set by operating system (OS) vendors or tuned by

6.1. Flow classification 72

network administrators. There is an upper bound on the window size a receiver can advertise back to

the sender; in the absence of windowscale negotiation [Bra89], no TCP connection can exceed a 64KB

window. In addition, resource sharing is often subject to local policy. In the absence of adequate methods

for readjusting how TCP distributes bandwidth, network operators and system administrators often trade

efficiency for predictability, shaping traffic to conform to local notions of fairness or in anticipation for

expected demand [KD11].

Given these different potential sources of rate control, what can be said about their relative im-

pact on Internet traffic at large? Much of the underlying motivation is shared with the landmark study

by Zhang et al. [ZBPS02] on the characteristics of Internet flow rates. Using traces spanning both ac-

cess, peering and regional links, Zhang et al. analyse traffic according to potential rate limiting factors.

Amongst other findings, host window limitations were found to affect over 30% of traffic for the ac-

cess networks studied. Importantly, the authors found a strong correlation between flow throughput and

flow size, postulating that this could derive from user behaviour, with large transfers more likely to be

performed over higher bandwidth connections.

In addition to such general investigations, this chapter is equally indebted to comprehensive work of

a narrower scope. Significant portions of the observed traffic pertain to well known applications which

have been previously studied. Rao et al. [RLL+11] survey strategies used for video streaming at both

Youtube and Netflix and characterise the properties of interleaved block sending patterns used to pace

streams. These patterns are also the subject of [AN11], in which the burstiness of Youtube traffic in

particular is found to result in considerable losses over residential connections. A large portion of the

traffic observed in the MAWI dataset originates from HTTP file sharing services, commonly referred to

as One-click Hosting (OCH) websites [AMD09]. In [SCBRSP12], the authors study the characteristics

of such traffic over a three month period, detailing the different throttling strategies used by different

providers.

6.1 Flow classification
The aim of this section is to describe a process which distinguishes those flows which have their through-

put limited by mechanisms other than the usual TCP response to loss and delay. Each flow can be charac-

terized as being either application paced, in which the sending application is limiting the data provided,

host limited, whereby local constraints at either end host cap throughput, or receiver shaped, in which an

artificial constraint is imposed by either a middlebox or receiver.

One fundamental precondition to decouple the influence that network loss, host configuration and

TCP behaviour has on the throughput experienced by a flow is the reconstruction of the congestion

window behaviour of TCP flows on the basis of observed data. Unfortunately, the congestion window

value is internal to the sender’s TCP state machine and may not manifest itself in the absence of sufficient

data from the application layer. A more easily observed quantity which serves as a reasonable proxy for

the congestion window is the number of unacknowledged bytes in flight, henceforth referred to as the

flight size, which can be derived given an accurate estimate of the end-to-end delay. The evolution of both

flight size and RTT can in turn be used to ascertain to what extent throughput is regulated by limitations

6.1. Flow classification 73

●

● ● ●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

0

20

40

60

0 10 20 30
Time (s)

W
in

do
w

 s
iz

e
(K

B
)

Limiting factor ● Application

Figure 6.1: Congestion window over time for application paced flow.

imposed at different layers of the networking stack.

Given a stream of packets, the methodology presented in section 5.3 can derive a candidate RTT

for a TCP flow. Given a candidate RTT, a stream of packets with arrival times t1, t2, . . . can be aggre-

gated into a stream of flights. Intuitively, a flight is a clustered subset of a TCP flow which exhibits its

own temporal coherence; alternatively, it can be thought of as a series of consecutive packets that were

(roughly) generated by the sender as a response to the same protocol operation. A flight fi that begins

with the jth packet and ends with the kth is defined to have a total flight time τi = tk+1 − tj . The

algorithmic selection of initial and final packets in such a way that the resulting flights are indicative of

TCP behaviour remains an open problem. The RTT is assumed to provide a natural time frame for the

operation of TCP. As such, given an initial packet πj and an RTT estimate T , the kth (and final) packet

is selected to minimise the flight time error ei = |T − τi|. This mechanism resembles the methodology

described in [ZBPS02], but where flights are not defined as being both adjacent and disjoint; rather,

flows are decomposed into a stream of potentially overlapping flights. This helps the algorithm miti-

gate the deleterious effects of small deviations in the estimated RTT, which alters the properties of each

flight. Furthermore, since the flight size is continuous in time, it makes little sense to restrict window

reconstruction to a single sample per round trip time.

Having obtained flight information from each flow, the predominant factor that affects its throughput

can be determined. Within the context of TCP, flows are classified as being artificially constrained by

three distinct processes: application pacing, host limited and receiver shaping.

6.1.1 Application paced

A flow whose throughput decreases because it has no outstanding data to send is temporarily limited

by the application. Flights can be identified as being application limited if terminated with a packet

smaller than the MSS and followed by an inter-arrival time greater than the RTT, as consistent with

[ZBPS02]. The underlying reason for this defintion is that most TCP implementations will wait some

time for subsequent bytes to be written to the socket if the next packet to be sent is smaller than the MSS,

unless the TCP NODELAY option is set [Nag84].

6.1. Flow classification 74

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●
●●

0

100

200

300

0 30 60 90 120
Time (s)

W
in

do
w

 s
iz

e
(K

B
)

Limiting factor ● ● ●Network Application Host

Figure 6.2: Congestion window over time for partially host limited flow.

A flow with application limited flights however is not necessarily application paced. In practice,

all flows for which the final packet is observed contain at least one such flight. For the purposes of this

work however, the focus remains on identifying cases in which throughput is predominantly determined

by application behaviour. One such example is illustrated in figure 6.1, in which a stream is delivered by

periodically writing blocks to the sending socket. The resulting network-level behaviour is distinct from

traditional congestion control: short bursts are interspersed with protracted silence. Application limited

flights, which terminate on non-MSS packets, are highlighted at the end of each burst.

This behaviour is in stark contrast to that exhibited in figure 6.2, where distinct transfers are multi-

plexed on top of a single transport association over time. From the perspective of the network, there is

little to distinguish the behaviour of such traffic from independent TCP flows. Application paced connec-

tions such as Youtube traffic however exhibit a degree of regularity which can potentially be exploited

by the network in predicting demand or smoothing bursts.

In order to identify such recurring behaviour, flows are classified as being application paced if

the period between bursts terminated by application limited flights is consistently under 10 seconds

and the standard deviation of the intermediate pauses is under one second. This definition in particular

purposely ignores flows which exhibit long silence periods due to user interaction, and follows closely

the behaviour historically associated to Youtube streaming in particular.

6.1.2 Host limited

Given sufficient bandwidth and traffic to send, a flow may encounter local constraints at either end-host

which caps its throughput. For instance, the buffer space allocated on both the sender and receiver side

is often pre-configured, and it is common practice to tune these values down on popular servers and

managed infrastructure in a bid to conserve memory or bandwidth. A receiver is also limited in the

window size it can announce to the remote sender; if the windowscale option [JBB92] is not negotiated

during the TCP handshake, the advertised window cannot exceed 64KB.

In both cases, a local decision by either host can determine the upper bound of the flow rate. These

host limited cases are characterised by a constant window size over time. The methodology described

6.1. Flow classification 75

for flight aggregation at the beginning of this section typically generates a large number of flights, repre-

senting many likely combinations given a base RTT estimate. In order to identify the flat-lined behaviour

of a host limited flow, the flight stream is first filtered to remove some of the uncertainty derived from

small fluctuations in the RTT. The maximum flight size observed for each RTT interval is then selected,

with a sequence of flights being classified as host limited if the same maximum was observed over six

consecutive RTTs (this is twice the period suggested in [ZBPS02]). In practice, increasing the period

over which the maximum window size is tracked allows us to more accurately discern between host

limited behaviour and more conservative bandwidth probing, such as that performed during the convex

phase of TCP CUBIC [HRX08].

A flow may be host limited for only brief periods of its lifetime, as illustrated in figure 6.2. To

filter out such cases where host limitations are not the predominant factor in defining flow throughput,

a further requirement is imposed for a flow to be classified as being host limited: the average window

size over a flow lifetime should be within 10% of the inferred host limit, which is not the case in figure

6.2. In practice, flows can exhibit both application pacing and host limitations, with bursts being sent

at a capped window size followed by application pauses. In such cases, a flow will still be classified as

being application paced if it meets the requirements set out in the previous section, as doing so provides

evidence that it controls throughput in spite of the degraded performance provided further down the

stack. This line of reasoning applies equally to the occurrence of sporadic loss; so long as block delivery

is ensured within the time frame dictated by the application, it remains in control.

6.1.3 Receiver shaped

A flow which is neither application paced or host limited can still be artificially constrained by flow

control (rather than by congestion control). Traditionally, in TCP the sender is responsible for regulating

throughput. However, the receiver can also shape throughput by manipulating the advertised window an-

nounced on every acknowledgement. Such receiver window auto-tuning has been available on Windows

operating systems since Vista [vis], and can also be leveraged by middleboxes to throttle inbound traffic

[app]. To evaluate the potential impact of such behaviour, a further heuristic is proposed to identify

receiver-shaped traffic. For flows in which both directions of traffic are observed it is possible to corre-

late the evolution of the advertised window with the size of reconstructed flights. Figure 6.3 displays an

example of a receiver-shaped connection, in this case throttled by an intermediate middlebox. Since the

advertised window may be fluctuating, it is not always obvious which of the many updates were effec-

tively applied by the sender as successive values supersede each other. An example of a reconstructed

flow which is subjected to receiver shaping is displayed in Figure 6.3.

For flows in which both directions are observed, it is possible to classify flights as being receiver-

shaped if there is a statistically significant correlation between the advertised window size and the maxi-

mum flight size observed. Harnessing the stream filtering used in detecting host limited behaviour, such

analysis is performed over a sliding window of 10 RTT intervals. A flight is flagged as being receiver

shaped if the correlation between receiver window and flight size is statistically significant; a flow is

considered to be predominantly receiver shaped if over half of its flights are flagged as such. This co-

6.2. Revisiting assumptions 76

0

5

10

15

20

0 100 200 300 400 500 600
Time (s)

W
in

do
w

 s
iz

e
(K

B
)

Sender window Receiver window

Figure 6.3: Congestion window over time for receiver limited flow.

variance analysis is not performed on flights which contain out-of-order or retransmitted packets. In

such cases both the receiver and sender window sizes are correlated by definition: the receiver buffer

will temporarily fill expecting the next packet in sequence while the sender will reduce its congestion

window due to temporary setback in ACK clocking.

Given that receiver shaping classification requires correlating information in both directions of a

TCP connection, it will come as no surprise that the absence of the reverse path can introduce false

positives into our measurements. This happens because any given flow might be receiver shaped in such

a manner that the heuristic erroneously attributes its behaviour to host limitations. In the absence of

additional evidence, this misclassification is difficult to detect explicitly. Instead, the ratio of receiver

shaped flows which would have been incorrectly identified is calculated for cases where the reverse path

was not observed. This error rate can then be used to evaluate the accuracy of classifier results.

6.2 Revisiting assumptions
Having processed each daily trace individually, flow characteristics are aggregated longitudinally in

order to trace the evolution of constraints affecting TCP across time and both spatial and topological

dimensions, following the process described in section 5.2. The ensuing analysis revisits four commonly

held assumptions regarding Internet throughput. The aim in doing so is to provide a much needed factual

verification of these assumptions, which itself can lead to a re-appraisal of Internet throughput modelling

efforts, particularly those enunciated in Zhang et al. [ZBPS02]. Although all models require simplifying

assumptions in the name of analytic tractability, the primary goal of this section is to inform on which

are the best assumptions to make if one is setting out to use or develop an Internet traffic throughput

model.

6.2.1 Throughput is primarily shaped by TCP

Internet flow rates are commonly viewed as the output of congestion control embedded at the transport

layer. While it is often convenient to model flow throughput according to the steady state behaviour

of such algorithms, there are many potential caveats. For one, there is an implicit assumption that the

6.2. Revisiting assumptions 77

YEAR LOSS (%)

LIMITATION (%)

APPLICATION HOST RECEIVER TOTAL

2007 1.29 49.47 18.58 0.55 68.60

2008 1.37 49.55 17.80 0.69 68.04

2009 1.44 47.10 14.50 2.57 64.17

2010 1.22 36.78 20.44 3.21 60.43

2011 0.82 46.10 13.49 0.60 60.20

Table 6.1: Percentage of traffic bytes affected by each constraint by year.

network is the bottleneck. Under such conditions, TCP acts as a distributed optimisation algorithm in

allocating capacity to flows. Section 6.1 however presented several cases where such an assumption does

not hold. The prevalence of application pacing, host limitations or receiver shaping can all condition the

accuracy of models which assume only elastic traffic adjusting to network conditions alone.

Table 6.1 displays the extent to which each of these limitations affects inbound traffic in the MAWI

dataset over time. The bulk of the volume in bytes is either conditioned by host limits or application

pacing. The use of receiver shaping on the other hand is both small in scale and temporally confined to

2009 and 2010. Over five years, the overall effect of the three selected constraints has dropped by close

to 10%.

To understand where these dynamics stem from, table 6.2 further breaks down these findings by

autonomous system, listing the effect of each limitation for the five most significant traffic sources per

year. Over the observed five years, traffic remains similarly consolidated: approximately 90% of all

inbound traffic is sourced from the top 100 ASes. However, the weight of the most significant sources

changes considerably. In 2007 and 2008, a considerable proportion of the traffic exchanged over the

interdomain link was content hosted within Japan (NTT, Limelight). From 2009 onwards, most of these

local sources established peering connections, bypassing the observed link entirely. This accounts not

only for the significant drop of traffic from NTT, but also its altered nature: after 2009 traffic from NTT

travelled from further away and was less likely to be application paced.

As the weight of traditional carriers such as Cogent and NTT has waned, ASes known to harbour

one-click hosting services such as Choopa, Webazilla, WZ Communications, Carpathia and LeaseWeb

have gained significance. Since many websites hosted in these ASes facilitate the distribution of copy-

righted content, they have an incentive to continue using hosted infrastructure rather than deploying their

own and risking prosecution. Furthermore, these domains are more likely to host applications which re-

sort to capping the maximum window size as a means of throttling traffic. The increased weight of ASes

which resort to these methods, such as Red Hat and Carpathia, significantly contributes to the unexpected

increase of host limitations for 2010 displayed in table 6.1.

Overall, these findings demonstrate that flow rates are not typically dictated by TCP con-

gestion control alone. While the impact of application pacing and host limitations on rate control is

decreasing, as of early 2012 60% of all inbound traffic was still subjected to either. The reduction of

application pacing however may reflect the nature of the observed link, as many traditional streaming

6.2. Revisiting assumptions 78

YEAR ASN AS NAME TRAFFIC (%)

LIMITATION (%)

APPLICATION HOST RECEIVER

2007 2914 NTT 28.34 65.29 14.68 0.39

36561 YOUTUBE 15.16 77.41 11.19 0.11

22822 LIMELIGHT 8.12 55.11 21.90 1.37

15169 GOOGLE 3.72 24.11 10.29 0.08

174 COGENT 2.87 47.65 32.22 0.76

2008 2914 NTT 17.16 62.40 13.71 1.03

22822 LIMELIGHT 10.57 65.40 21.48 0.52

36561 YOUTUBE 9.15 72.48 12.16 0.09

2518 BIGLOBE NEC 5.06 84.34 5.84 0.10

15169 GOOGLE 3.52 52.98 17.13 0.18

2009 3462 HINET 9.93 60.07 4.82 0.05

15169 GOOGLE 8.78 74.79 12.16 0.02

43515 GOOGLE (YOUTUBE) 8.08 83.46 9.83 0.14

2914 NTT 5.69 39.76 8.37 0.16

46742 CARPATHIA (LAX) 4.27 41.04 48.01 2.03

2010 2914 NTT 7.39 21.80 4.91 0.00

31976 RED HAT 7.03 9.62 41.63 0.00

7366 LEMURIA 5.88 51.95 15.72 5.85

43515 GOOGLE (YOUTUBE) 5.22 77.76 8.41 0.14

46742 CARPATHIA (LAX) 4.69 33.06 42.71 4.21

2011 2914 NTT 10.37 50.33 8.19 0.18

20473 CHOOPA 8.92 54.03 19.24 0.21

43515 GOOGLE (YOUTUBE) 8.69 69.71 7.56 0.16

35415 WEBAZILLA 6.05 40.02 11.23 0.95

40824 WZ COMM. 4.83 42.08 17.43 0.05

Table 6.2: AS-level analysis of throughput limiting.

providers have migrated towards peering or CDNs, bypassing interdomain links entirely. As such it is

reasonable to expect the effect of application pacing to be more pronounced when considering traffic

beyond transit. By 2011, successive capacity upgrades have led to a less congested network, but one

where predicting how bandwidth is shared is fundamentally harder due to the influence of stakeholders

such as content providers and operating system vendors.

6.2.2 Throughput is primarily sender driven

A more widely held and less frequently enunciated assumption is that flow throughput is primarily de-

termined at the sender side. Intuitively, it is in a receiver’s best interests to maximize the flow rate, while

the sender bears the responsibility for sharing network capacity and reducing the overhead incurred due

to losses. The Internet architecture however confers the receiver the ability to throttle rates through flow

control. From answering the previous assumption, it is clear that throughput is mostly determined by

the actions of the sender: receiver shaping and host limitations together affect at most 24% of all traffic.

6.2. Revisiting assumptions 79

0.00

0.25

0.50

0.75

1.00

2007 2008 2009 2010 2011 2012
Date

R
at

io

Direction

Outbound

Inbound

Type

Flows

Bytes

(a) TCP windowscale deployment over time.

0.00

0.25

0.50

0.75

1.00

8 16 32 64 128 256 512
Mean window size (KB)

R
at

io
 o

f f
lo

w
s

Year

2007

2008

2009

2010

2011

(b) CDF of window sizes for host limited flows.

Figure 6.4: Longitudinal evolution of TCP window parameters.

Despite this it is worth understanding the nature of these host limitations in particular, and towards which

direction flow control is swinging.

A critical component in determining the upper bound for the congestion window size is the negoti-

ation of the TCP windowscale option during the initial handshake. In its absence, a sender cannot have

more than 64KB in flight. Furthermore, the default buffer size on either end of the connection can also

limit the size to which the congestion window can increase. Both settings are primarily subject to operat-

ing system configuration. Throughput conditions on the receiver side improve as OS upgrades are rolled

out. The installed user base within WIDE is comparatively stable over time, and as such is expected

to exhibit continual improvements unless a significant OS rollback were to occur or a large set of users

with outdated OSes were to be added to the network. This however is unlikely, and a more plausible

explanation for any significant degradation in host limitations lies in macroscopic shifts in routing or

application popularity which lead to a change in where traffic originates from.

This hypothesis is tested by first verifying windowscale deployment over time. Figure 6.4a shows

the ratio of traffic and flows for which windowscale was successfully negotiated. Results are calculated

solely over traffic where the initial handshake was observed. For added context, data for the outbound

direction is also displayed. The first result that stands out is the steady increase over time of windowscale

usage, rising from 25% of all inbound bytes in early 2007 to almost 80% by late 2011. Furthermore,

the effects of content consolidation manifest themselves in the disproportionate coverage of bytes when

compared to flows. With the reduced stake of large ISPs in inbound traffic, transit traffic has become

dominated by a small set of centrally managed stakeholders such as Google, lowering the effective

barrier for deployment of protocol extensions. Conversely, the temporary drop in windowscale adoption

for inbound flows in 2009 is due to the increase of traffic from Asian sources, in particular HiNet.

Given the prevalence of windowscaling, the primary source of host limitation should therefore

be the configuration of socket buffer sizes. Figure 6.4b shows the distribution of the average window

size for flows which are flagged as being host limited. While the 64KB limit intrinsic to TCP is a

common upper bound on window size, other defaults are apparent and have shifted over time. The

6.2. Revisiting assumptions 80

YEAR

TOTAL (%) RECEIVER (%)

FLOWS BYTES FLOWS BYTES

2007 3.86 20.31 70.82 74.33

2008 3.91 19.26 68.96 71.16

2009 2.60 15.29 61.54 62.81

2010 3.07 21.73 53.16 64.63

2011 1.76 14.11 51.27 60.82

(a) Inbound traffic.

YEAR

TOTAL (%) RECEIVER (%)

FLOWS BYTES FLOWS BYTES

2007 8.22 24.24 76.50 82.54

2008 11.80 32.40 68.81 84.38

2009 10.40 30.50 62.50 84.28

2010 4.00 27.00 76.14 88.07

2011 3.01 25.94 72.00 85.91

(b) Outbound traffic.

Table 6.3: Percentage of host limited traffic over time by total number of flows and bytes. The proportion

for which the receiver side was the bottleneck is also shown.

use of 16KB and 32KB buffer sizes (default buffer sizes for Windows XP and Vista respectively) was

progressively phased out over the five year period. In addition to traditional power-of-two increments of

the window size, different limits are apparent amongst hosting providers: 50KB, 100KB (The Planet),

160KB (Limelight) and 200KB (SoftLayer), reflecting the overall weight such ASes can have in shaping

transit traffic. The influx of Asian traffic in 2009 led to an increase in observed host windows beneath

16KB.

While figure 6.4b demonstrates that host limitations for inbound traffic have been lifted over time, it

still does not adequately answer on what side of the connection they are imposed. Table 6.3 breaks down

the proportion of host limited traffic over time for both inbound and outbound direction. In addition

to presenting the ratio of flows and bytes affected by host limitations, the relative proportion of traffic

identified as being conditioned by the receiver side is also displayed. In either direction a very small

fraction of flows are affected. Small flows are both numerous and unlikely to last long enough for window

limits to be reached or reliably detected. The affected flows therefore tend to be large, and as such can

translate into a significant amount of traffic. The proportion of flows and bytes for which the receiver side

imposed the maximum window size dropped by 20% and 15% respectively over five years for inbound

traffic, reflecting the successive OS upgrades performed for hosts within WIDE. Interestingly, these

trends do not surface for outbound traffic: hosts outside Japan were consistently more likely to dictate

the maximum window size. In part, this reflects the different nature of the traffic under observation:

outbound traffic for this dataset is more geographically and topologically diverse, with content in many

cases being retrieved from Japan by residential hosts from within Asia.

The endpoint which ends up dictating the maximum achievable throughput through flow con-

trol is typically a function of the OS adoption cycle. With the windowscale option covering 80% of

all inbound traffic, the main source of host level constraints are now conservative buffer sizes. For this

dataset, hosts internal to WIDE have seemingly been upgraded at a faster rate, or less conservatively,

than their remote counterpoints. As such, throughput has become increasingly sender driven over time

for inbound traffic.

6.2. Revisiting assumptions 81

101.5

102

102.5

103

10−1 100 101 102 103

Flow size (MB)

M
ed

ia
n

T
hr

ou
gh

pu
t (

K
B

/s
)

Year

2007

2008

2009

2009 (US)

2010

2011

(a) Mean congestion window over mean RTT.

101.5

102

102.5

103

10−1 100 101 102 103

Flow size (MB)

M
ed

ia
n

T
hr

ou
gh

pu
t (

K
B

/s
)

Year

2007

2008

2009

2009 (US)

2010

2011

(b) Flow size over flow duration.

Figure 6.5: Median throughput for inbound traffic by flow size.

6.2.3 Throughput is correlated with flow size

Given host limitations are most likely to affect large flows, it’s worth considering whether other con-

straints are applied disproportionately across flow sizes. A commonly held assumption is that throughput

is correlated with flow size, which has been verified empirically in previous studies [CAL+13, ZBPS02].

Much of the data used in these studies however precedes the widespread adoption of high bandwidth con-

nections and use of streaming media, both of which can impact the extent to which contention occurs in

the network.

Figure 6.5 shows the median throughput as a function of flow size, by year. In figure 6.5a, flow

throughput is calculated as the ratio between the mean TCP window size (in bytes) and the mean flight

length (in seconds). Compared to the more commonly used ratio of flow size by flow duration, displayed

in figure 6.5b, this method is less susceptible to application behaviour and as such provides a more

accurate estimate of the achievable rate. In both cases, flows are binned by size on a logarithmic scale,

with median throughput calculated across each bin. Due to routing changes and increased congestion,

overall throughput in 2009 is lower than other years given there is a greater proportion of traffic from

Asian neighbours, particularly over smaller flow sizes. For reference the throughput for traffic from the

US alone is plotted for 2009,in which case a more natural yearly progression becomes apparent. For both

plots, a clear disparity is visible across flows sizes: for flows in the 10MB to 100MB range, although

throughput has consistently increased with time, it has done so at a lower pace than for flows under

10MB.

These results confirm the notion that the highest throughputs are attained by the largest flows,

but they also show that improvements in throughput do not apply equally to all flow sizes. Whereas

throughput has consistently improved for low-volume traffic, it has not done so for high-volume traffic.

Hence, these findings suggest an increased differentiation between high-value, low-volume traffic whose

throughput has markedly increased, and low-value, high-volume traffic whose throughput has stagnated.

Although the reported flow sizes are not a reliable predictor of the overall traffic volume amassed over

a flow’s lifetime given the short time span of each daily trace, this seemingly subverts the notion that

6.2. Revisiting assumptions 82

0.00

0.25

0.50

0.75

1.00

8 16 32 64 128 256 512 1024
Mean window size (KB)

R
at

io
 o

f f
lo

w
s

Flow size

(0B, 100KB]

(100KB, 1MB]

(1MB, 10MB]

(10MB, 100MB]

(100MB, inf]

(a) 2007.

0.00

0.25

0.50

0.75

1.00

8 16 32 64 128 256 512 1024
Mean window size (KB)

R
at

io
 o

f f
lo

w
s

Flow size

(0B, 100KB]

(100KB, 1MB]

(1MB, 10MB]

(10MB, 100MB]

(100MB, inf]

(b) 2011.

Figure 6.6: CDF of the average window size by flow size by year.

flow rates are strongly correlated with flow size in a simple, proportional fashion. This is expounded

by further analysing the average window sizes across flow sizes, displayed in Figure 6.6. In 2007, there

is a visible correlation, with larger flows attaining higher window sizes. Furthermore, the distributions

cluster prominently around 64KB due to a low rate of windowscale negotiation. By 2011, this clustering

is less pronounced, with window sizes increasing across the board, but with larger flows often outpaced

by shorter counterparts.

Clearly, the extent to which rates are constrained is closely tied to flow size. Table 6.4 breaks down

the results from table 6.1 by flow size. Most limitations will invariably affect larger flows, as applications

which shift more traffic, such as streaming media or bulk file transfers, are more likely to either attain

or self-impose constraints on flow throughput. Many small flows on the other hand never exit slow start,

in which case none of the studied constraints will be reached or readily identified. This dichotomy is

reflected on loss rates, which will be higher for flows regulated by TCP congestion control. Additionally,

the discrepancy in loss rates is further exacerbated by geographic properties: traffic exchanged over poor

infrastructure tends to be smaller, with flows from China exhibiting particularly high end-to-end loss

rates.

These results suggest that network upgrades are unlikely to improve performance for signif-

icant proportions of traffic. This is most visible in figure 6.5, where improvements in capacity for

coping with higher bursts of activity (figure 6.5a) has outpaced the actual delivery rate set by applica-

tions (figure 6.5b). Given the popularity of emulating a constant bit rate service over TCP, that no such

abstraction is provided at the socket level API is unfortunate.

6.2.4 Throttling primarily affects heavy hitters

The observations so far have highlighted that flow throughput is often subjugated from TCP by external

stakeholders. A third important element in the ensuing tussle is in understanding the role operators can

play in imposing their own preferences upon traffic. As such, this section provides a brief overview

of the extent, and under what circumstances, customer networks resorted to receiver shaping over the

duration of the dataset. From preliminary inspection of table 6.4, it is apparent that receiver shaping was

6.2. Revisiting assumptions 83

YEAR LOSS (%)

LIMITATION (%)

APPLICATION HOST RECEIVER TOTAL

2007 1.90 14.65 5.45 0.10 20.20

2008 2.27 14.99 5.37 0.09 20.44

2009 2.39 15.66 3.83 0.55 20.03

2010 2.15 10.55 4.18 0.36 15.09

2011 1.19 11.13 2.53 0.05 13.71

(a) Flows under 10MB.

YEAR LOSS (%)

LIMITATION (%)

APPLICATION HOST RECEIVER TOTAL

2007 0.96 61.62 23.07 0.71 85.40

2008 0.88 61.49 21.94 0.92 84.35

2009 0.98 57.86 17.70 3.28 78.85

2010 0.71 43.97 24.45 4.03 72.45

2011 0.62 52.95 15.55 0.71 69.21

(b) Flows over 10MB.

Table 6.4: Percentage of traffic in bytes affected by each constraint by year according to flow size, along

with aggregate retransmission ratio.

limited in both scope, affecting at most 4% of bytes, and time, being primarily concentrated within 2009

and 2010. A breakdown of receiver shaping by traffic source is provided in table 6.5, listing for each

year the five most affected stakeholders within the top twenty ASes, and their respective contribution to

the overall traffic and retransmissions observed yearly.

Prior to 2009, receiver shaping mostly targeted flows which attained the highest throughput, and

may have in part been performed by hosts. In addition to affecting Microsoft, which distributes Win-

dows updates using the same flow control mechanisms exploited by middleboxes, some CDN traffic

was also reined in. By 2009, and likely as a reaction to increased contention within their networks, the

network-level footprint of receiver side throttling shifts from shaping by rate, to shaping by volume.

Specific targets start to emerge within OVH, Cogent and Level 3 and TeliaNet, all of which hosted sig-

nificant file-sharing websites at the time which would continue to be affected throughout 2010. By 2011,

receiver shaping mostly subsided, affecting primarily Lemuria (HotFile) and Mediafire. In the pres-

ence of increased contention, some customer networks felt obliged to curb traffic which in many cases

was already limited by the source. The selected targets of shaping however were neither the biggest

contributors in terms of volume, nor the most aggressive senders as reflected by the relative proportion

of retransmissions, most likely being singled out instead based on the perceived legality of the content

downloaded. When consulting the overall popularity of these targets in table 6.2, it is apparent that some

of the most throttled ASes such as Carpathia and Lemuria had been far more popular in previous years,

suggesting that users may migrate to other content providers when confronted with lower rates. While

successive bandwidth upgrades alleviated the need for throttling, it is unclear whether the middleboxes

6.3. Conclusions 84

responsible were discontinued, or limits were merely raised to the extent where the sender side would

once again become the bottleneck.

In some cases, multiple stakeholders apply different rate control mechanisms simultaneously,

leading to quality degradation and unusual rate behaviours. Conventionally, it is assumed that it is

in the best interest of content providers to use network resources as fully as possible, whereas ISPs have

it in their best interest to police resource usage and control flow rates. However, as shown here, current

business practices can create an alignment of incentives where both content providers and ISPs choose

to limit the throughput of a particular class of traffic. This may lead to traffic suffering from artificially

slow rates that are much worse than those experienced by other classes. In these cases, the combination

of multiple rate control techniques being applied by different stakeholders may lead to a traffic profile

whose rate behaves in a manner quite removed from the commonly assumed TCP dynamics.

6.3 Conclusions
The focus of this chapter has been on elucidating the main factors that affect flow throughput, but which

escape traditional TCP modelling based on end-to-end loss and delay. In particular, the changing role

of host limiting, application pacing and receiver shaping in defining flow rates across five years of

transit traces is explored. The results show that for the observed link, over half of all inbound TCP

traffic can be ascribed to one of the aforementioned constraints. Furthermore, continuing OS upgrades

are responsible for having progressively lifted the artificial throughput constraints imposed by the host

stack. In particular, windowscale negotiation for inbound traffic increased threefold in the observed

period, covering over 80% of all observed bytes by 2012; in addition, buffer sizes have also shown

continuing increases over time.

These developments have significantly improved throughput, in particular for smaller flows. How-

ever, evidence of throughput limiting effects independent from available end-to-end capacity was also

uncovered. This means that no amount of bandwidth will directly improve TCP rates for a consider-

able amount of traffic. Application-driven techniques for chunked transfer in particular are widely used,

accounting for 40% of all inbound traffic observed in 2011. Finally, there is significant evidence of re-

ceiver traffic shaping prior to 2011 based on the modification of the receiver advertised window in a bid

to curtail congestion.

6.3. Conclusions 85

YEAR ASN AS NAME

RECEIVER

SHAPED (%)

CONTRIBUTION (%)

BYTES REXMT

2007 8071 MICROSOFT 4.61 0.69 0.17

41690 DAILYMOTION 2.57 0.52 0.13

20940 AKAMAI 1.50 1.49 0.90

22822 LIMELIGHT 1.37 8.12 5.01

19166 ACRONOC 0.81 1.40 1.22

2008 21844 THE PLANET 2.43 0.76 0.82

174 COGENT 2.02 1.89 1.39

19166 ACRONOC 1.61 2.02 1.16

1299 TELIANET 1.25 1.25 1.59

2914 NTT 1.03 17.16 13.24

2009 16276 OVH 31.97 1.26 0.29

3356 LEVEL 3 6.24 2.18 1.50

22822 LIMELIGHT 5.92 1.60 0.88

174 COGENT 5.49 1.30 0.91

16265 LEASEWEB 5.09 1.98 1.06

2010 1299 TELIANET 25.67 1.31 1.43

3356 LEVEL 3 17.33 2.71 3.16

16276 OVH 15.28 1.84 0.32

16265 LEASEWEB 7.70 3.23 2.16

29748 CARPATHIA (ASHBURN) 7.46 2.62 1.30

2011 7366 LEMURIA 4.45 1.96 1.56

46742 CARPATHIA (LAX) 1.89 1.64 0.68

46179 MEDIAFIRE 1.20 1.54 0.82

29748 CARPATHIA (ASHBURN) 1.08 2.06 1.27

35415 WEBAZILLA 0.95 6.05 3.33

Table 6.5: AS-level analysis of receiver shaping. For each year, the five most affected ASes are listed

with the total proportion of traffic which was receiver shaped as well as the overall contribution of the

AS to the total volume of bytes and retransmissions for that year.

Chapter 7

Network support for transport resilience

This chapter refines the concepts proposed in PREFLEX given the insights provided by the MAWI

dataset presented in chapters 5 and 6. This evidence-based approach is further enhanced by adapting the

resulting architecture, INFLEX, to function within existing frameworks for Software-defined networking

(SDN). This chapter is organized as follows:

Section 7.1 reviews results from the MAWI dataset and their implications for the design of a resource

pooling architecture.

Section 7.2 provides an overview of SDN and OpenFlow, a standardized protocol for interfacing be-

tween control and data plane.

Section 7.3 describes the design of INFLEX, a cross-layer architecture for network resilience.

Section 7.4 evaluates path fail-over and network overhead of the proposed solution

Section 7.5 discusses how INFLEX can be extended from providing resilience alone into a unifying

traffic management solution, encompassing most of the benefits put forward in chapters 3 and 4.

7.1 Design considerations
In chapter 3, one of the primary justifications for network assisted resource pooling was that existing

solutions, such as MPTCP, were not suitable for most flows. This assumption was founded on the fact

that most flows were too short to make effective use of available bandwidth without prior knowledge

of path quality. The analysis in chapter 6 paints an even starker picture than was originally assumed:

significant portions of traffic are limited and as such not inclined to make efficient use of capacity even

if it were available. With over half of all TCP traffic constrained by factors other than loss, the allure

of MPTCP as a means of making use of all available end-to-end capacity between endpoints seems

circumscribed to a small set of high-throughput transfers.

This suggests that the flexibility and robustness provided by resource pooling may be a more com-

pelling feature than efficiency alone. Despite being broadly designed for robustness, the current Internet

architecture remains remarkably vulnerable to failures. Managing faults still poses a significant opera-

tional challenge, in part because faults can occur at every layer of the networking stack, and can affect any

7.1. Design considerations 87

element along a network path. PREFLEX was designed with efficiency in mind, addressing resilience in

passing. In particular, PREFLEX expects sufficient host feedback in order to adjust path weights. This

proves adequate for when many flows experience the same outage, but may fail to detect faults which

affect isolated flows. This chapter instead formulates a resource pooling architecture by first dealing

with the single case – addressing when a transport protocol detects failure – and then extrapolating to the

domain level, providing efficient traffic management.

7.1.1 Latency

While efficiency has become a less pressing concern for most traffic, latency has become increasingly

valued, particularly as providers attempt to ensure responsive, interactive services. This trend manifests

itself in two manners within the MAWI dataset. Firstly, chapter 5 detailed how significant volumes of

traffic have been progressively shifted from transit to local peering links. Given propagation delay is

a critical component of end-to-end delay, putting content closer to end-users is an extremely effective

method of cutting latency, and has assisted content distribution networks in becoming a key stakeholder

within the Internet. Secondly, flow rates for shorter transfers are increasing at a faster rate than for

large flows, as displayed in figure 6.5. Developments such as the increase of the initial window size

[DRCC10], TCP Fast Open [RCC+11] coupled with higher socket limits and windowscale negotiation

highlighted in chapter 6 have all benefited shorter flows disproportionately.

The original design of PREFLEX imposes a potentially significant burden on latency by requiring

network intervention at each flowlet. While such network processing is small, and will necessarily

improve over time, in hindsight tying together path selection and flowlet start does not feel entirely

justified. Chapter 6 demonstrated that over 40% of all traffic is regularly application paced, and so

the prevalence of opportunities for balancing at the flowlet level is unquestionable. However, imposing

network intervention on each flowlet start is excessive for short, delay-sensitive traffic, particularly since

the benefit such small-grained balancing provides the network is negligible. Requiring every PREFLEX

router to inspect packets on the basis of packet markings made by external entities was also a potential

source of Denial-of-service (DoS). While such attacks are easily dismantled by rate limiting the number

of FNE packets received across network boundaries, at the very least this represents additional overhead

for the operator, who must adequately configure and manage such a service. As such, in considering

an architecture for resilience, it would be beneficial to both instantiate network processing only when

required and be robust to DoS attacks by design.

7.1.2 Deployment

Ideally resilience could be implemented at the transport layer alone, for the same motives rate control

is best left to end-hosts: ultimately, the host is best positioned to detect end-to-end path faults and can

often react over shorter time scales than the network, which must concern itself with reconvergence. This

approach for path fail-over was a significant feature in Stream control transport protocol (SCTP) [Ste07].

Unfortunately, deployment of SCTP has been negligible in over a decade since standardization, in part

because the pervasiveness of middleboxes has significantly affected the ability for new transport proto-

cols to be deployed. More recently MPTCP has been proposed addressing many of the same concerns

7.1. Design considerations 88

0.00

0.25

0.50

0.75

1.00

2007 2008 2009 2010 2011 2012
Date

R
at

io
 o

f f
lo

w
s

Option

SACK

Timestamp

Windowscale

Direction

Inbound

Outbound

Figure 7.1: TCP option usage.

as SCTP whilst maintaining the same wire format as TCP, thereby ensuring middlebox compatibility.

Despite this, widespread deployment is far from guaranteed, and is largely tied to the rate of OS adoption

as evidenced in chapter 6.

As a reference point, figure 7.1 tracks the use of three TCP options by overall volume in flows

across both directions in the MAWI dataset. While Selective acknowledgement (SACK) is successfully

negotiated for most connections, the deployment of the timestamp and windowscale options has lagged.

The former primarily assists in providing more accurate RTT estimates and is therefore largely auxiliary.

The latter however is critical for performance: without windowscale negotiation, a sender’s congestion

window cannot exceed 65KB. Despite offering a clear benefit to both endpoints, being simple to imple-

ment and incurring a low overhead, windowscale deployment has only recently picked up momentum,

two decades since standardization. Expecting substantial deployment of a more complex and costly ex-

tension such as MPTCP over the near future is likely optimistic. Critically, transport extensions require

receiver adoption and are therefore subject to the willingness and ability of users to upgrade their OS.

This shortcoming affects PREFLEX in equal measure. The original assumptions for deployment in

chapter 3 were consistent with an Internet where traffic was mostly exchanged between peers. Currently

however, the asymmetry between the software which runs on either endpoint has never been greater, in

large part due to the proliferation of mobile devices. The barrier to deployment has been raised further:

receiver side deployment of even modest TCP extensions can be protracted, even when incentives are

aligned. Any proposed modification must find its way upstream to the code base of different OSes and

be verified to perform adequately over a greater variety of constraints than in the desktop computing era.

Rather than proposing a path for incremental deployment, this chapter focuses instead on how to obtain

similar benefits immediately – modifying sender side hosts only.

7.1.3 Multipath routing

A host, however, cannot directly affect routing without changing destination address, which would break

legacy TCP receiver side implementations. Additional extensions are required on the sender side network

7.2. OpenFlow background 89

R
a

ti
o

 o
f

re
c
e

iv
e

d
 d

a
ta

Number of networks

Year

2007

2008

2009

2010

2011

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

10
4

(a)

R
a

ti
o
 o

f
s
e

n
t

d
a

ta

Number of networks

Year

2007

2008

2009

2010

2011

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

10
4

(b)

Figure 7.2: CDF of traffic by announced network prefix for (a) inbound and (b) outbound traffic.

to enable multipath forwarding. Conventional wisdom suggests that maintaining parallel routing planes

requires a proportional increase in table size [WHPH08], which itself can be subject to exponential

growth. In practice however, this state can be significantly reduced by forsaking coverage for a small

proportion of traffic. Rather than reflect the entirety of its potential path diversity for all traffic, an edge

provider can instead provide additional routing planes for only a subset of popular prefixes.

The extent to which such a gain is possible for the MAWI dataset is quantified in figure 7.2, which

displays the cumulative distribution function of outbound traffic across network prefixes announced by

BGP neighbours. Over five years, traffic to approximately 340,000 unique prefixes was observed. Invari-

ably however, an increasing amount is sent to a small group of prefixes – by 2011, over 50% of traffic

went to the top 100 prefixes alone. As detailed in chapter 5, this reflects ongoing structural changes in

the Internet architecture as content providers interconnect directly edge, eyeball networks, and content

becomes increasingly consolidated across a set of large content providers and national and regional ISPs.

PREFLEX hinged on the fact that multipath routing state could be maintained and managed in a

scalable manner, and these results demonstrate that multipath routing state can be significantly reduced

by covering fewer destinations while still benefiting most traffic. Within the MAWI dataset virtually

all inbound and outbound traffic could be mapped to 10,000 unique network prefixes. Existing tools

such as RouteFlow [RNS+12] are already capable of overlaying routing on commodity switches, but the

incurred overhead can still be a concern for production networks. Rather than address the scalability

challenges inherent to multipath routing directly, these results suggest that a tangible deployment path

lies instead in reducing the scope over which it is applied.

7.2 OpenFlow background
A valuable development in assisting traffic management has been the emergence of SDN, which can

facilitate vastly improved flexibility for scalable, policy-based network control. Software defined net-

works decouple the data plane and control plane, allowing both to evolve independently. A traditional

instantiation of a software defined network for data centres is shown in figure 7.3a. Each physical host

7.2. OpenFlow background 90

Physical hosts

software switch

VM 1 VM 2 ...

software switch

VM 1 VM 2 ...

Dom0

DomU

physical switch

...

c
o

n
tr

o
lle

r

(a)

flow entry

...

match fields counters instructions

In
g
re

s
s
 p

o
rt

M
e
ta

d
a
ta

M
A

C
 s

rc
 a

d
d
re

s
s

M
A

C
 d

s
t
a
d
d
re

s
s

V
L
A

N
 I
D

V
L
A

N
 p

ri
o
ri
ty

M
P

L
S

 l
a
b
e
l

M
P

L
S

 t
ra

ffi
c
 c

la
s
s

IP
v
4
 s

rc
 a

d
d
re

s
s

IP
v
4
 d

s
t
a
d
d
re

s
s

IP
v
4
 n

e
x
t
p
ro

to
c
o
l

IP
v
4
 T

o
S

T
C

P
 /
 U

D
P

 s
rc

 p
o
rt

T
C

P
 /
 U

D
P

 s
rc

 p
o
rt

(b)

Figure 7.3: OpenFlow (a) architecture and (b) flow entry structure.

runs a number of virtual machines, each connected locally through a edge, software-based switch (such

as Open vSwitch [PPK+09]) running on the underlying physical host operating system, which will be

denoted as dom0. This switch is in turn connected to further forwarding devices, ensuring access to

a wider network. The forwarding logic of each device can be accessed and configured by a controller

through the establishment of a control channel through a common protocol, of which OpenFlow is the

most widely used [MAB+08]. Both software and physical switches are indistinguishable from a con-

troller’s perspective: how a device implements OpenFlow is immaterial, so long as a forwarding device

conforms to the given Application Programming Interface (API).

An OpenFlow flow table is composed of multiple flow entries, shown in figure 7.3b. Each flow entry

is comprised of a pattern to be matched, and the corresponding instructions to be executed. The match

fields over which an entry can be compared span from data link to transport layers, covering not only

source and destination addresses at each protocol header, but also traffic classes and labels for Virtual

LAN (VLAN), MPLS and IPv4 headers. Additionally, a counter keeps track of the number of times

the entry is matched. If more than one matching entry is found, only the entry with the highest priority

is processed. Finally, each entry has a pair of associated timeout values: a soft timeout, within which

an entry is expired if no matching packet arrives, and a hard timeout, by which an entry is irrevocably

expired. If neither timeout is set, a flow entry persists indefinitely.

An OpenFlow switch in turn maintains multiple flow tables. Every packet received at an OpenFlow

compliant switch is processed along a pipeline which starts by matching the packet against table 0. From

this first, default table, corresponding instructions may redirect the packet for further matching against

another table, thereby chaining processing. This pipeline processing ceases once a matching entry fails

to include a redirection request, with the accumulated instruction set being executed. In addition to

redirections, valid instructions include modifying packet fields, pushing and popping packet tags, and

defining through which ports a packet should be forwarded. If at any point no matching entry is found,

the packet is buffered at the switch, and the truncated packet header is sent to the controller. Based on

the header contents, a controller may decide to install a new flow entry on the switch, or allow the packet

to be dropped altogether. Compared to the underlying abstracted network elements which compose the

7.3. Architecture 91

data path, the controller is often expected to be entirely software based, and as such is not constrained

in how it should process packets. In practice, this freedom is curbed as increasing complexity at the

controller both reduces the rate at which packets are processed, as well as increasing latency for packets

buffered at the switch.

SDN provides an abstraction over which different architectural paradigms can be adapted and even

coexist. It does not however prescribe or advocate a specific design – network practitioners must still

consider system properties when grappling with fundamental trade-offs affecting consistency, isolation,

reliability and efficiency. Some of the design considerations for scalable traffic management were pre-

viously described in section 7.1. The overall performance of the described architecture is subject to two

further critical trade-offs. Firstly, the granularity at which flow entries are installed determines how often

a controller is called to intervene. While installing an entry at a flow granularity may allow fine-grained

control of resources, it increases both the load on the controller and the latency of the withheld packet.

Conversely, as the granularity becomes coarser, the overhead incurred by the controller is reduced at

the cost of flexibility in controlling traffic. Secondly, controller placement is critical [HSM12]. At one

extreme, a fully centralized controller is omniscient within a domain at the expense of reliability and

scalability. At the other, a distributed system of controllers forsakes consistency and liveness in order to

scale robustly.

7.3 Architecture
This section describes INFLEX, an architecture which provides edge domains with greater end-to-end

resilience. Rather than probing paths through active or passive means, the network delegates the respon-

sibility for fault detection to end-hosts. The system relies on packet marking at the host to select a path

through the local domain. This provides far greater scalability in terms of the proportion of traffic and

destinations which can be covered, at the cost of requiring small changes to the end-host TCP/IP stack.

INFLEX is therefore particularly suited for managed environments, such as datacenters or enterprise net-

works, which not only have greater control over the end-host operating system, but also generate large

volumes of traffic towards destinations which cannot be readily upgraded.

An overview of the proposed architecture as applied to a single domain is shown in figure 7.4. Hosts

are connected to the local network through an OpenFlow-enabled edge switch. While edge switches

typically reside within each physical machine, alternative aggregation levels such as the top of rack or

end of row may also be used. Each switch is configured by a specialized controller which resides locally,

referred to as an inflector. The local network is configured by a centralized routing controller to provide

multiple virtual routing planes. While these planes are necessarily intradomain in scope, some degree of

interdomain diversity can also be achieved by changing egress node.

The core of the architecture relies on repurposing the DS field in each IP packet to provide an in-

band signalling channel between the end-host and the inflector. The header on inbound traffic is set by

the edge switch and read by the host, and is used by the inflector to signal which plane a flow has been

assigned to. The header on outbound traffic is set by the host and read by the edge switch, and is used

by the transport protocol to ensure that all traffic for the flow is forwarded along the given plane. Hosts

7.3. Architecture 92

Forwarding planes

Routing controllerInflector Datapath

Host 1 Host 2 ...

X

flag
E

echo
I N FL

interior forwarding label

0 1 2 3 4 5

Figure 7.4: INFLEX architecture (above) and header (below). The edge switch forwards traffic across

virtual planes set up by a centralized routing service.

can request a new plane to be assigned by the inflector in case of an end-to-end path fault; this provides

efficient cross-layer failure recovery. The DS standard [BBC+98] reserves a pool of code points for

local use identified by setting the right-most bit, henceforth referred to as the INFLEX flag. When

set, the rest of the DS field should be interpreted as containing two fields, shown in figure 7.4. An

Interior Forwarding (INF) label, which determines the plane over which a packet is forwarded, and an

echo bit, which explicitly signals a request from the host or a reply from the network. The remainder of

the description of INFLEX is split across its main components: the end-hosts, the edge switch and the

inflector.

7.3.1 INFLEX end-hosts

INFLEX hosts set the INF label of outbound packets according to the value assigned by the inflector,

reproducing the path re-feedback design pattern introduced in chapter 3. INFLEX however cannot rely

on marking by the remote endpoint to trigger network action, as this has been shown to be essentially

undeployable. Instead, path requests are initiated by the sender, which must then await for a network

reply piggybacked on a returning packet.

The changes required to support this at the sender side network stack are minimal, and are illustrated

in figure 7.5a. Every transport connection occurs over a socket, a local structure containing the variables

associated to the ongoing flow. At the network layer, the local socket has a DS value which is copied to

every outbound packet (point 1). Within INFLEX, the transport protocol can trigger a request (point 2),

which leads to a network response contained in incoming packets (point 3).

Assume a transport protocol wishes to switch the plane it is currently assigned. With INFLEX, it

can send an inflection request by setting the echo bit of the local DS field (point 2, figure 7.5a). All

subsequent outbound packets will be marked with the resulting value. The network layer then proceeds

7.3. Architecture 93

Application

Transport

Link layer

Network

DS

1

2

3

(a)

1 ...

2 if (is_inflex(pkt)) {

3 if (!is_inflex(sock) ||

4 (is_pending(sock) && is_reply(pkt))) {

5 copy_label(sock, pkt);

6 clear_echo(sock);

7 }

8

9 } else if (is_inflex(sock))

10 clear_inflex(sock)

11 ...

(b)

Figure 7.5: INFLEX (a) host stack and (b) pseudo-code for packet reception.

to inspect inbound packets, waiting for a network response, as delineated in figure 7.5b. After demuxing

an incoming packet, pkt, to the corresponding socket, sock, a receiver first verifies whether the INFLEX

flag is set on the incoming packet (line 2), establishing whether the underlying network supports INFLEX

for the given connection. The receiver must then decide whether it should change the virtual plane the

socket is currently assigned. This can only happen under two conditions. Firstly, if the DS value for the

current socket does not have the INFLEX flag set (line 3). This typically occurs on flow start, where

a connection is spawned with a default DS value. Secondly, if the local DS value has the echo bit set,

there is a pending inflection request. If the incoming packet has the same bit set, it corresponds to the

network reply (line 4). Under both previous cases, the connection switches forwarding plane by copy

the interior forwarding label from the incoming packet to the local socket, and setting the INFLEX flag

(lines 5-6). These changes are all applied at the IP layer – transport protocols need only to decide when

to send inflection requests – while applications can remain unchanged.

7.3.2 The edge switch

The edge switch is primarily responsible for mapping INFLEX marked packets to the appropriate for-

warding plane. On start up its datapath is configured by the local inflector, which installs the appropriate

flow entries on it in order to construct the processing pipeline in figure 7.6. This pipeline can be parti-

tioned into three distinct blocks, responsible for triaging, policing and inflecting packets. For clarity, the

processing pipeline is conceptually described as a sequence of flow matches across distinct tables. In

practice, an implementer is free to collapse flow tables and entries to improve performance. An impor-

tant safeguard is that a legacy pipeline must be present, establishing a default forwarding plane expected

to be used by traffic to which INFLEX is not applicable.

The triage phase is responsible for distinguishing whether a packet is capable of using INFLEX.

Firstly, INFLEX is only applicable to IP packets. Traffic is then differentiated according to the port

on which the packet arrived: if connected to a host, the interface is said to be internal, otherwise it is

7.3. Architecture 94

Packet In
Start at table 0

External port?

Flag set?
Switch to legacy

pipeline

Switch to outbound
policer table

Outbound Inbound

no

yesno

Valid? Drop packet

Switch to inbound
policer table

Valid?

Switch to legacy
pipeline

Switch to outbound
inflection table

Switch to inbound
inflection table

Match found?

Echo set?

Send to Inflector
Switch to legacy

pipeline

Match found?

Set flag

Set label and echo bit

triage

policy

inflex

Select virtual
plane pipeline

Restore matched
INFLEX label

yes

no no

yes

yes

yes

no

no

yes

no

yes

Figure 7.6: Pipeline installed to the edge switch datapath.

external. Any inbound IP traffic may potentially be INFLEX capable and as such can proceed to the next

stage. For outbound IP traffic, only packets with the INFLEX flag set require further processing. Packets

for which this flag is not set are assumed to be legacy traffic.

The policy phase decides whether a packet is permitted to use INFLEX. For either direction, a

packet is compared against a policer table, which contains a set of rules describing local policy concern-

ing INFLEX usage. The rules applied to each direction however may differ, particularly since outbound

packets can be further scrutinized according to the INF label. For example, this allows the outbound

policer to enforce which virtual planes are available to specific tenants or applications. For this reason,

the action applied if a packet is matched within the policer table also differs according to direction. For

inbound traffic, a matching rule indicates that the packet does not satisfy local requirements for INFLEX

use, and is consequently treated as legacy traffic. For outbound traffic, a packet is already marked as

being INFLEX capable. Any matching entry therefore indicates that it is in violation of local policy and

should consequently be dropped.

Finally, the inflex phase processes the respective header and forwards the packet. A packet is first

matched against an inflection table in either direction. This table is detailed in the next section, and can

be assumed to contain no matching entry initially. For outbound traffic, the packet is typically redirected

to the plane mapped by the interior forwarding label. The one exception are inflection requests, which are

forwarded to the local inflector for further processing. For inbound traffic, the INFLEX flag is marked

in order to notify hosts that the flow is INFLEX capable, and the packet is then processed according to

7.4. Analysis 95

the legacy pipeline.

7.3.3 The inflector

Each edge switch is controlled by an inflector, an SDN controller expected to reside locally. An inflec-

tor is firstly responsible for configuring the underlying datapath according to the previously described

pipeline. Secondly, an inflector must process inflection requests.

Inflection requests require network intervention in assigning a packet to a forwarding plane. The

dynamic nature of this decision process cannot readily be instantiated as a set of static rules at the edge

switch, since a same flow must be able to be reassigned to a different plane in case of path faults. There-

fore, inflection requests intercepted at the edge switch must be sent to a controller for further processing.

Rather than overloading a centralized controller however, this decision can be taken locally – since the

inflector manages the local rules associated to each virtual network, it already has full knowledge of the

routing table associated to each plane. Upon receiving such a request, the inflector proceeds in three

steps. It first verifies which virtual networks maintain a valid route for the given destination address.

Given this list of potential planes, it then inspects local policy to verify which planes the packet is al-

lowed to use. The intercepted packet contains the plane which the flow is currently using – this plane

should be excluded from the candidate list unless there is no other option available. Finally, a single

plane, identified by an interior forwarding label, is selected from the resulting list of candidates. The

selection algorithm is not prescribed by the INFLEX specification, but a reasonable baseline is to select

a routing entry proportionally to the assigned route weight.

Having selected an appropriate plane, the inflector installs forwarding rules into either inflection

table. In the inbound direction, all packets matching the reverse flow are set to be marked with the

corresponding INF label. This conveys the selected forwarding plane back to the host. In the outbound

direction, all packets matching the flow are to be processed according to the label. This guarantees that

any packet sent between the inflection request and its response are forwarded in a consistent manner.

Rules installed to the inflection tables are ephemeral by nature, with a hard timeout of 1 second (the

minimum permitted in the OpenFlow standard). This enables per-flow granularity with minimum flow

state while also rate limiting inflection requests. Furthermore, flow entries can be configured to be sent

to the controller upon expiry. This potentially allows the inflector to collect realtime information on the

availability of each forwarding plane, allowing for further refinement of the plane selection algorithm.

7.4 Analysis
This section details the evaluation of INFLEX as well as details pertaining to its implementation. A

reference implementation of the inflector was developed as a component of the POX network controller

[pox]. Additionally, INFLEX support for TCP was added to the Linux kernel, and is available as a small

patch for version 3.8. All source code, as well as a virtual machine to replicate subsequent tests, is being

made publicly available. The use of POX in particular invalidates any rigorous performance evaluation,

as the implementation is not geared towards efficiency. Instead, the contributed code acts as a proof-of-

concept for INFLEX, allowing the mechanics of the specification to be inspected and fine-tuned.

7.4. Analysis 96

Inflector ovswitch

INFLEX
server

Client

switch

Legacy
server

Figure 7.7: Simulation setup.

To this end, a simple evaluation scenario is used, illustrated in figure 7.7. On one end is an INFLEX

capable domain: a set of virtual hosts acting as servers connected to an Open vSwitch edge switch

controlled by an inflector. On the other end is a remote client. Typically this is an end-user device

outside network operator control. We assume that the client is running a legacy network stack and

connected to a switch with no SDN functionality. A single physical connection between the client and

this switch acts as the bottleneck for all flows, with the bandwidth set to 10Mb/s. The edge switch has

four potential planes over which it can forward traffic between the servers and the client. We simulate

failures within the INFLEX domain by artificially dropping all forwarded packets belonging to a given

plane; we denote this plane as being down. At any given moment one of the four available planes is

down; each such simulated failure lasts for 15 seconds at a time, affecting planes cyclically. The reverse

path, connecting from client to server, is always assumed to be functional. Propagation delay between

both switches is set to 50ms, resulting in a base round trip time between servers and client of 100ms.

7.4.1 Sender-side resilience

The first case study under review is one of the most common use cases for datacenters: a remote client

downloading data from hosted servers. Under the conditions described previously, the forwarding path

will be periodically affected by recurring failures. Since the nature and the origin of the fault are not al-

ways apparent to network devices, it is assumed that network elements within the INFLEX domain have

no indication of the ongoing failure. Instead, it is up to the servers to detect and recover from perceived

problems by issuing inflection requests. Clearly, requesting a path incurs some cost to network and host

alike. For the network, an inflection request requires additional processing. For the host, this processing

manifests itself as increased delay. This begs the question: when should a host request an inflection?

The obvious candidate is to piggyback inflection requests on retransmissions spawned by retransmission

timeout (RTO). This leverages an existing transport mechanism which is well understood and only trig-

gered under anomalous path conditions (as opposed to congestive losses). From the perspective of the

host, any delay incurred by the inflection request is amortized by the retransmission timeout itself, which

has a minimum value of 1 second. From the perspective of the network, such inflection requests should

be both rare, reducing the amount of processing required, and critical to improve availability, justifying

the expense in addressing them.

Figure 7.8 displays the congestion window over time for two concurrent flows towards a remote

7.4. Analysis 97

0

50

100

150

0 15 30 45 60 75 90 105 120
Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (
se

gm
en

ts
)

Forwarding
 plane

0

0

50

100

150

0 15 30 45 60 75 90 105 120
Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (
se

gm
en

ts
)

Forwarding
 plane

0

1

2

Figure 7.8: Congestion window for concurrent downloads towards client from legacy (above) and IN-

FLEX (below) servers.

client. The first connection traced is a download from a server without INFLEX support, in which all

packets are forwarded over the default path. The vertical lines signal the points at which the default

forwarding path, plane 0, fails. Despite only failing for 15sec, the disruption to the transport flow lasts

twice as long due to the exponential nature of the retransmission timeout, which doubles in duration at

each occurrence. The second connection traced is a download occurring in parallel from an INFLEX

capable server. In this case, each path failure is recovered by sending an inflection request on each

retransmission timeout. The returned path is randomly assigned, as our basic proof-of-concept inflector

does not currently keep track of network conditions. The time between path failure and flow recovery is

directly tied to the RTO, in this case taking approximately one second. This value cannot be improved

upon within the INFLEX framework, as the duration of flow entries introduced by inflection requests

has a minimum timeout of 1 second. Conveniently however, this matches the lower bound of the RTO

as defined by TCP, and it is therefore unlikely that a transport protocol would desire faster fail-over. In

practice, the recovery time may be extended in order to account for spurious timeouts. For connections

over wireless media in particular, timeouts may occur due to transient effects such as interference. While

this is functionally equivalent to path failure, the transient nature of such events does not always require

changes to the forwarding path.

An interesting implication of figure 7.8 is that TCP senders using INFLEX can accommodate

path fail-over seamlessly. Retransmissions conveniently distinguish between congestion events, trig-

gering fast retransmission and similar heuristics, and pathological network conditions, which spawn

7.4. Analysis 98

0

50

100

150

0 15 30 45 60 75 90 105 120
Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (
se

gm
en

ts
)

Upload
 destination

INFLEX

Legacy

Figure 7.9: Congestion window for concurrent uploads from client towards servers.

repeated retransmission timeouts. In the case of the latter, the adopted response is to reset the congestion

window and resume slow start – effectively restarting the flow. This behaviour is extremely conservative,

but is a natural corollary of assuming as little as possible about the underlying network. As a result, no

substantial change is required to the congestion control mechanisms employed by TCP in retrofitting

cross-layer path fail-over at the sender using INFLEX.

7.4.2 Receiver-side resilience

Path failures can also affect the reverse path with equally nefarious consequences: the sender will re-

peatedly timeout in the absence of acknowledgements from the receiver. Unlike failures affecting the

forward path however, the INFLEX host does not actively track the reliability of the ongoing connection.

TCP is sender driven, with receivers primarily generating acknowledgements as a response to inbound

data. Hence, the reverse path lacks the reliable delivery mechanisms available in the forward path; if the

TCP Timestamp option is not used, the receiver often lacks even an accurate RTT estimate. Furthermore,

in the absence of data packets to be sent, there is no RTO on which to trigger inflection requests.

A receiver must instead rely on inferring path failure from the packet inter-arrival time when gen-

erating duplicate acknowledgements. With the exception of cases where immediate receiver feedback is

required, such as a TCP timestamp request, duplicate acknowledgements are typically sent on the arrival

of out-of-order data. Under path failure, the arrival time between such out-of-order events will rise ex-

ponentially as the sender TCP stack becomes tied to its own retransmission timeout. This behaviour is

illustrated in figures 7.9 and 7.10, which show the result of using INFLEX with the same experimental

setup but a reversed flow of data. Figure 7.9 displays the evolution of the congestion window size over

time as the client uploads data concurrently to both a legacy and an INFLEX server. While the single

forwarding path does not experience outages, the reverse path is periodically affected by failures. The

corresponding data packet inter-arrival time is shown in figure 7.10, with each sample point also dis-

playing the routing plane used. For an ongoing TCP flow with sufficient data from the application layer

the packet inter-arrival time at the receiver should be consistently low. RTT level dynamics are appar-

ent on slow start, in which the sender is clocked by incoming ACKs, and during congestion events, in

which out-of-order delivery temporarily affects the throughput. On path failure however, the inter-arrival

time increases exponentially, with each inbound packet triggering a duplicate acknowledgement. For the

7.4. Analysis 99

●
●

●

●

●
●●●

●

●

●

●

●●

●

●

●●●
●●
●
●●
●●●●●
●●
●

●

●

●●●●●●

●

●●●●●●●●

●

●

●●
●
●●●●●
●
●
●
●

●●●●

●

●

●
●●

●●

●
●
●
●
●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●●●

●

●●

●

●
●

●

●

●●●●
●
●●

●

●●

●

●

●●●●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●

●●●
●

●

●

●

●●
●

●●●●●

●

●

●●
●●
●●●

●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●
●●●
●
●
●
●●●

●

●●●●●●

●
●
●
●
●

●
●●

●

●

●●
●●
●
●●●●●●
●
●●
●
●●

●

●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●
●
●

●
●●●●●●●●●
●●●●●●
●●

●

●

●●●
●●

●●
●
●●
●
●●

●
●●
●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●●●●●●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●
●

0.1

0.3

1.0

3.0

10.0

30.0

0 15 30 45 60 75 90 105 120
Time (seconds)

T
im

e
(s

ec
on

ds
)

RTT

Forwarding
 plane

● 0

●
●

●●
●
●●

●

●●

●●

●
●●●●●●●●

●
●●

●
●
●●●●●●●●●●●●●●

●
●
●
●

●
●
●●●●

●

●

●
●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●

●

●

●

0.1

0.3

1.0

3.0

10.0

30.0

0 15 30 45 60 75 90 105 120
Time (seconds)

T
im

e
(s

ec
on

ds
) RTT

Forwarding
 plane

● 0

1

2

3

Figure 7.10: Data packet inter-arrival time for legacy (above) and INFLEX (below) receivers.

upload to the legacy server, successive RTOs result in a recovery time of nearly 30sec.

An INFLEX receiver can use this information to decide when to trigger an inflection request. It

can achieve this by setting a threshold for the time elapsed between duplicate acknowledgements, hence-

forth referred to as dupthresh. Comparatively to the sender, the receiver should be more conservative,

as by design it has less information on which to act upon and does not typically exert control on the

congestive feedback loop. Furthermore, neither sender nor receiver can reliably detect whether the for-

ward or reverse path are at fault. By acting conservatively, a receiver allows the sender, which may also

be INFLEX capable, to initiate recovery before trying to correct the reverse path. For the experiment

displayed in figure 7.10, the dupthresh is set to twice the RTO, resulting in an overall downtime of ap-

proximately 3 seconds. Since each data point is generated on inbound data packets, recovery is signalled

by a packet pair. A first inbound packet exceeding dupthresh triggers an inflection request, which pig-

gybacks on the acknowledgement sent out in response. A second inbound packet returns approximately

1 RTT later with the forwarding plane assigned by the network attached. Clearly some failures may not

be recoverable, particularly if the remote host is not INFLEX capable and the fault lies on the reverse

path. Nonetheless, the overhead incurred at the host is negligible, merely complementing congestion

avoidance mechanisms with additional signalling. Remarkably, INFLEX incurs no additional memory

costs at the host, operating as an extended API over the existing inet connection socket, rendering it

equally applicable to all transport protocols which use this socket structure, such as SCTP and Datagram

Congestion Control Protocol (DCCP).

7.4. Analysis 100

10
2

10
2.5

10
3

10
3.5

10
4

10
4.5

2007 2008 2009 2010 2011 2012

Date

F
lo

w
 e

n
tr

ie
s

Entry duration

Flow length

Minimal

Flow type

All

Data

Figure 7.11: Mean flow state for outbound traffic.

7.4.3 Network overhead

The granularity at which an SDN deployment should manage traffic is often subject to debate. On one

hand, hardware advances such as Ternary Content-addressable Memories (TCAMs) offer fast lookup

times over large tables, affording flow precision for many potential SDN deployments. On the other,

deployments will often include cheaper, more flexible software switches which are less capable of scal-

ing performance with the number of flow entries. Importantly, operating on a per-flow granularity is

more likely to overload the controller, which itself can be a considerable source of latency. As a result,

managing flow aggregates is often the preferred means of reducing this overhead, at the cost of flexibility

in affecting flows individually.

INFLEX does neither strictly, exerting network control at a sub-flow granularity while pushing flow

state to the end-host. Figure 7.11 investigates the relative expected overhead incurred by the network on

adopting such an architecture. The graph tracks the mean flow state from applying different flow entry

policies for outbound traffic in the MAWI dataset. The solid lines track the resulting flow table size if

traditional per-flow state were maintained, with every unique five tuple inserting a table entry for the

entirety of the flow’s lifetime. This is equivalent to the mean number of flows at the observed link and

is further refined according to whether data was traced for the unique five tuple. For domains which

exchange traffic with the wider Internet, per-flow state can be particularly crippling as malicious SYN

floods and port scans regularly inflate the required state in the network. Such attacks had visible impact

in 2011 in particular, nearly doubling the number of flows.

INFLEX however inserts ephemeral rules in response to inflection requests. For the worst possi-

ble case, all existing flows would trigger an inflection request simultaneously – matching the overhead

incurred by a per-flow approach. In practice even this is overly pessimistic, as an inflector could resort

7.5. Unifying approaches 101

to a per-aggregate granularity in the case of widespread outages. Actual network state would strongly

depend on the exact inflection strategy adopted by the transport protocol. One practical reference point is

to investigate the resulting overhead if paths were requested on flow start, as this number will exceed re-

transmission timeouts under normal operating conditions. This is further illustrated in figure 7.11, which

also tracks flow table size if each unique five tuple were to only generate a flow entry for 1 second, the

minimum expiry time for OpenFlow. This is functionally equivalent to the flow arrival rate, and deter-

mines the expected number of requests per second sent to the controller. The resulting flow table size

is reduced dramatically in comparison to the traditional case where state is allocated for the duration of

the flow, and the order of magnitude difference is crucial for software switches in particular. However,

under such conditions state becomes more strained by the large fluctuations imposed by DoS attacks,

suggesting that inflection requests should only be used after connection establishment; this corresponds

to the grey dotted line in figure 7.11. Importantly, such an approach also opens the possibility of using

inflection requests for assisting traffic management in addition to enabling improved resilience.

7.5 Unifying approaches
In chapter 3, PREFLEX was presented primarily as an architecture for dynamic traffic management, but

one in which resilience was identified as a potential benefit given sufficiently adaptive control. In this

chapter, the opposite approach was taken: deriving a traffic management solution from an architecture

first built around resilience.

INFLEX corrected two potential shortcomings in PREFLEX. Firstly, by eschewing the need for

receiver collaboration, INFLEX is unilaterally deployable by edge domains. Secondly, path acquisition

was decoupled from whether a host had timely information on path quality, removing the requirement for

flows to incur additional delay on flow start. As a side-effect, by not tying network processing to SYN

packets, INFLEX is also less susceptible to DoS attacks. Nonetheless, INFLEX as presented thus far is

geared solely towards resilience. The remainder of this section details how it can be extended to provide

the benefits offered by PREFLEX, which are typically of direct interest to operators in particular.

7.5.1 Traffic management

PREFLEX offered a fine-grained mechanism for traffic engineering, allowing networks to assign flowlets

to network paths. INFLEX on the other hand only inflects flows upon request. This seemingly reduces

the opportunities for traffic balancing to when path faults arise. The host modifications introduced in

section 7.3.1 however make a provision for flow balancing: on flow start, an INFLEX capable flow has

no label associated to the socket, and must consequently acquire whatever label is provided by the edge

switch.

Operators can therefore assign flows to specific paths by marking inbound packets with the appro-

priate label. Clearly, only the first packet of a flow will take effect – once a flow has acquired an INF

label, it will no longer inspect subsequent INFLEX headers unless an inflection request is pending. As

such, one possibility for operators is to intercept the inbound SYN packet and tag it with the appropriate

label, in much the same manner as PREFLEX. This presents two challenges. Firstly, it introduces a DoS

7.5. Unifying approaches 102

vulnerability as the amount of network processing is tied to the volume of inbound SYN packets, which

can greatly exceed the number of actual flows as shown in figure 7.11. Secondly, there is no obvious

manner of intercepting SYN packets using OpenFlow as TCP flags are not actionable packet header

fields. This means that such functionality would either have to be implemented by specific middleboxes,

adding complexity to the proposed architecture, or flow table entries would have to span the entirety of

a flow, increasing table size significantly. In either case, pushing packets to the controller on flow start

would necessarily incur a performance penalty for all flows.

A faster, more scalable approach relies on the fact that hosts will ignore the INFLEX header once

a label has been acquired. As such, marking a stream of packets within a flow will have no negative

repercussions. This means that rather than redirecting specific packets to the controller for marking,

a rule for marking the inflection label can be installed a priori to the datapath. Within the flowchart

presented in figure 7.6, this corresponds to installing a wildcarded entry on the inbound inflection table.

Since such an entry would have a lower priority than pending inflection requests, the basic INFLEX

mechanism described in section 7.3 remains unaffected. Since the rule can be wildcarded by network

prefix , the number of rules would likely be small. Figure 7.2 suggests that over 50% of traffic is

destined to as few as 100 prefixes. Interestingly, such marking rules need not be applied by the edge

switch, instead being performed at a hardware switch relying on TCAM. This both allows larger tables

and reduces lookup times, while still delegating policy enforcement to edge switches.

A significant open issue that remains in this regard is how best to dynamically assign flows to routes,

as OpenFlow does not support probabilistic behaviour being pushed to the datapath. The most obvious

approach is to change the mapping between flow and route periodically, in a proportional manner to the

desired split. This raises two potential concerns. Firstly, flow entries have a time granularity of one

second. While an equal split amongst two paths can be achieved by alternating between flow entries

every second, finer flow split ratios over a greater number of paths will incur a much higher periodicity.

Secondly, the impact of this periodicity on overall system behaviour is not clear. A high path switching

frequency may degrade the performance of the switch due to rule churn. A low frequency on the other

hand may induce bursty traffic allocation over short time scales, particularly if flow arrival rates are

irregular or the bulk of traffic is composed by short flows.

Under some conditions, a network may need to reassign a flow to another path proactively. Opera-

tors may desire to assign particularly large flows to specific links, clear a link for programmed downtime

or allow routing changes to converge before actually using new routes. In any case, INFLEX provides

operators the means to force a path inflection. This can be achieved in two steps. The network first clears

the INFLEX header for an inbound packet. This signals to the end-host that the network is no longer

INFLEX capable, leading the network stack to clear the existing DS field, as detailed in figure 7.5b.

Next, a network sets the INFLEX header for the subsequent packet in the flow. This leads the receiver to

once more adopt INFLEX and acquire the label. While such forceful behaviour can disrupt transport, it

can prove valuable, and networks already have the means to achieve such goals through the cumbersome

manipulation of routing. In this case, INFLEX merely provides existing functionality more flexibly for

7.5. Unifying approaches 103

X
flag

E
echo

I N F
interior forwarding label

0 1 2 3 4 5

L
loss

Virtual pipeline

Inflector Routing controller

flow tables

Figure 7.12: Extending INFLEX for congestion balancing. The INF label on outbound packets is used

to select the virtual pipeline, while the loss bit is used to toggle between flow tables.

the network and more transparently for the end-host.

7.5.2 Congestion management

One of the unique propositions of PREFLEX was to enable networks to perform traffic engineering

according to congestion rather than just link load. This congestion balancing is particularly useful when

there is an asymmetry in available bandwidth between providers and when most traffic is not multipath

capable. In order to allow the use of congestion balancing as detailed in chapter 4, INFLEX requires two

modifications: hosts must signal loss to the network, and the network must account for lost packets.

Signalling loss requires marking the outbound INFLEX header. Given the constraints imposed by

the DS field, the only option is to reduce the size of the INF label to three bits, freeing one bit in the

process. At the transport layer, end-hosts would subsequently set this bit on all retransmissions. This

still allows for seven potential paths per destination, in addition to the default forwarding path.

Figure 7.12 displays the resulting header, alongside the changes internal to the network for counting

lost packets. At the edge switch, the datapath remains unchanged, with the INF label still being used

to select the appropriate virtual pipeline for the outbound packet. Unfortunately, OpenFlow does not

provide more than one counter per table entry. Given this constraint, extracting the necessary metrics

for performing congestion balancing proceeds by maintaining two replicas of the appropriate routing

table. One flow table is responsible for keeping count of the number of retransmitted packets per entry,

while the other accounts for all other packets. While slightly contrived, this implementation is sufficient

for providing congestion balancing as described in chapter 4, and much of the underlying details can be

abstracted from the routing controller.

The inflector has the responsibility of exposing an extended OpenFlow API which both implements

the routing policies dictated centrally by the routing controller, and returns statistics necessary for route

computation. Whenever a route is installed to a given plane, an inflector must insert the corresponding

rule into the two parallel flow tables for loss accountability. Whenever a central controller requests

7.6. Conclusions 104

counter metrics for a given entry, the inflector is responsible for returning not only the total number of

packets observed for a given route, but also the number of retransmissions. This cleanly decouples the

routing controller from the underlying implementation of INFLEX at the edge switch.

7.6 Conclusions
This chapter presented INFLEX, a scalable and easily deployable end-to-end resilience framework based

on the cross-layer control of an SDN-enabled network layer. The proposed architecture is shown to per-

form end-to-end path fail-over on much shorter time scales than existing solutions and is inherently

modular, providing failure recovery through cooperation between end-hosts and the IP network. In

comparison to reliability mechanisms operating purely at the transport layer, such as MPTCP or SCTP,

INFLEX enables transport resilience when communicating with legacy endpoints and does not require

host multi-homing. Conversely, when compared to mechanisms operating purely at the network layer,

INFLEX provides end-to-end visibility into path failures, allowing both fast detection and the imple-

mentation of remedial actions requiring fine-grained network control. The architecture design presented

is based on network measurements and implemented as a set of extensions to the Linux kernel and a

popular OpenFlow controller. This implementation is then evaluated experimentally, demonstrating that

high availability over multiple routing planes can be achieved without compromising network control

scalability.

Chapter 8

Conclusions

The presented body of work identifies opportunities and explores strategies for resource pooling through

the application of re-feedback. Resource pooling has evolved to being performed by different stakehold-

ers unilaterally: end-hosts, network operators and content providers all attempt to pool traffic by differing

means, and in a potentially conflicting manner. While recent work [KV05, WHB08, WRGH11] has lent

credence to pushing resource pooling towards the edge, this ultimately ignores the tussle over how traffic

is managed between these stakeholders. Network operators attempt to exploit path diversity through a

combination of route optimization and traffic balancing. Collectively, these traffic engineering methods

assist networks in minimizing the costs incurred by shifting traffic. Conversely, hosts are increasingly

capable of pooling traffic across paths either through the use of overlay networks or multipath congestion

control, neither of which necessarily share the objectives of the underlying network.

The ultimate end-product of this thesis is INFLEX, a cross-layer architecture for resource pooling.

The proposed traffic management solution is based on extensive measurement data, easily deployable,

and elegant, incurring no significant overhead at end-hosts and requiring limited, scalable processing

within the network. Importantly, it addresses concerns which are relevant to operators and users alike,

and is shown to be:

Efficient through the application of congestion balancing. A model is derived for traffic assignment

across different paths in proportion to the amount of congestion incurred by ongoing flows. In

contrast to past efforts, this allows the network to balance traffic according to end-to-end loss.

The resulting system is shown to make better use of available end-to-end capacity than existing

methods traditionally applied by operators for traffic engineering purposes.

Flexible through the use of cross-layer signalling. Path re-feedback in particular allows varying degrees

of control by the network over how traffic is assigned to links while minimizing required state.

Likewise, hosts are afforded path diversity but are free to opt out at no cost. This contrasts pos-

itively with existing solutions such as MPTCP, where path setup can incur additional bandwidth

and latency.

Robust through the delegation of fault detection to hosts. The transport protocol can request path

changes on-demand, which explicitly signals end-to-end path faults to the network. This informa-

8.1. Summary of contributions 106

tion can in turn be crowd-sourced from ongoing flows by the network and assist in fault location

and reparation.

8.1 Summary of contributions
This section summarises the contributions of this thesis in light of the original problem statement:

Given the nature of Internet traffic, how can the current architecture be realigned to facili-

tate resource pooling at both network and transport layers?

8.1.1 Internet traffic characterisation

This thesis began by providing a broader context within which to frame the evolution of resource pool-

ing. Chapter 2 traces how successive waves of new stakeholders and novel applications have influenced

and shaped the protocols and tools which form the Internet. Importantly, this chapter highlights traffic

management as an architectural afterthought, best understood as being driven by the nature of the traffic

and available capacity at hand.

In order to inform the design of a resource pooling architecture, an extensive longitudinal study of

Internet interdomain traffic was undertaken and documented in chapter 5. The analysis of the MAWI

dataset characterized over five years of TCP traces in relation to where traffic flows. The resulting

longitudinal snapshot, from a single transit link, corroborates previous findings [LIJM+10a] showing a

shift in content distribution. Of particular relevance to the present work was the increased consolidation

of traffic across a smaller set of stakeholders, with the ten most popular ASes alone accounting for over

50% of all traffic in either direction. From an operator perspective, this allows ample opportunity for

balancing traffic by manipulating a smaller set of traffic prefixes.

Section 5.3 further presented a novel RTT recovery mechanism based on cumulative histogram

construction and peak detection which assisted in analysing how large-scale shifts in where traffic flows

from has impacted end-to-end delay. The results highlight that traffic downstream is moving further

away from Japan as content is not only placed closer to consumers and bypasses the transit link entirely,

but also moves eastwards within the United States. Conversely, upstream traffic has moved closer as

data is predominantly uploaded to the very same co-location centres and content providers from which

data is retrieved. Within the observed time frame, the average RTT for inbound and outbound data has

converged to approximately 200ms.

RTT recovery is in turn used to scalably reconstruct and classify flow throughput behaviour in

chapter 6. The main contribution of this thread of work is in providing a re-evaluation of commonly

held assumptions regarding Internet flow rates. This was done by systematically identifying artificial

constraints to TCP traffic throughput across three categories: application pacing, host limiting and re-

ceiver shaping. The resulting analysis shows that flow rates are not typically dictated by TCP congestion

control alone, and has significant implications on how to reason about resource sharing in particular.

The findings equally confirm that TCP throughput is mostly determined by the actions of the sender and

that continuing operating system updates have progressively lifted many of the limitations inherent to

socket buffer sizes. These changes have allowed smaller flows to increase throughput at a far higher rate

8.1. Summary of contributions 107

than larger flows, which are more often than not affected by other mechanisms of traffic shaping. This

means that, although there is a correlation between flow volume in bytes and throughput, the relationship

between the two is non-linear and has changed with time.

8.1.2 Architectural contributions

The problem statement singled out the network and transport layers as the point in the Internet archi-

tecture where the tussle surrounding traffic management is greatest. At the hosts, TCP is designed to

saturate available bandwidth, making efficient use of the network. Within the network, operators often

attempt to minimize the maximal link utilization in order to contain costs and ensure some degree of

QoS. Re-feedback was originally proposed by Briscoe et al. [BJCG+05] and applied to the re-ECN pro-

tocol [BJMS08], which was put forward as a potential solution for resolving the contention surrounding

resource sharing – how capacity is shared end-to-end. It was therefore naturally identified as a start-

ing point for addressing the contention surrounding resource pooling – how traffic is allocated amongst

paths.

Chapter 3 began by stripping down re-ECN into a coarser, more practical method for Loss Ex-

posure (LEX). Re-ECN was designed to provide congestion accountability, allowing each domain to

precisely quantify the congestion incurred by others. Operators could then be expected to charge their

providers according to congestion volume - a metric exposed by re-ECN. Exposing congestion in an

accurate and enforceable manner however made an otherwise elegant mechanism complicated to de-

ploy. LEX stripped down the functionality of re-ECN to address a different problem. LEX transmits

information on loss as viewed by the transport layer to network resources, allowing traffic engineering

to be performed taking into account end-to-end path quality. As such, LEX requires neither congestion

marking at bottleneck routers, nor traffic shaping policers at the edges.

The use of loss exposure was then complemented with Path Re-Feedback (PREF), a cross-layer

signalling mechanism between the transport and network layer, also presented in chapter 3. PREF offers

the ability for the network to select and offer paths to hosts, thereby unlocking the path diversity which

already exists at stub domains such as ISPs, CDNs and enterprise networks. Within the self-imposed

constraints of IPv4 deployability, the resulting mechanism is necessarily simple, but also shown to be

surprisingly versatile. Historically, the PREF field can be interpreted as a synthesis of the previously

sanctioned uses for the same header space: neither strictly abiding by the thesis that end-hosts should

independently determine their own type of service, nor aligning itself with the antithetical view that the

network alone should establish differentiated services.

Finally, chapter 7 refines these proposals in the context of SDN. Section 7.1 grounded the design

of INFLEX on the observations made in chapters 5 and 6. In comparison to PREFLEX, INFLEX ad-

dresses resilience explicitly and minimizes the occurrence of path switching due to the delay incurred by

network processing. Existing transport proposals such as SCTP and MPTCP provide resilience through

precautionary establishment of multiple end-to-end paths. For short flows, such set up costs can be pro-

hibitive in terms of latency. By design, INFLEX provides resilience at no additional cost to flows: hosts

can simply request to change path in reaction to network events.

8.2. Future work 108

8.1.3 Resource pooling enhancements

Given the Internet architecture should not dictate the outcome of the tussle between end-host and network

solutions for resource pooling, the proposed architectural additions attempt to make both aware of each

other. This enables novel end-to-end traffic management techniques which are not currently possible,

requiring only sender-side modifications for immediate deployment.

Chapter 4 describes one possible extreme of the tussle, in which the network is entirely responsible

for resource pooling. A congestion balancer is derived in which PREFLEX can reap many of the benefits

of MPTCP by balancing flowlets according to loss, but without the need for application changes. Unlike

most existing TE methods, congestion balancing with PREFLEX is designed to minimize the impact of

route changes on the transport layer and as such is assessed by its impact on transport metrics rather than

traffic aggregates. The use of congestion balancing in the network is shown to not only lead to a more

efficient use of network capacity, but also a reduction of flow completion times.

Chapter 7 adopted the principles of path re-feedback to provide on-demand path fail-over for IP

traffic. Under the current architecture, path failures are largely a network responsibility: operators are

expected to detect, repair and recover from faults which may originate from beyond their network do-

main. Detection often requires scale – the reliability with which a fault can be identified relies on the

proportion of traffic affected – and in many cases faults affecting individual flows may go undetected.

Reparation varies according to the nature and origin of the fault, and is often not easily automated and

itself error-prone. In either case, the amount of time expended in detection and repair can often preclude

recovery, since most flows will terminate after successive timeouts.

The presented solution for resilient traffic management, INFLEX, is both unilaterally deployable,

providing benefits even when adopted by individual domains, and inherently end-to-end, potentially cov-

ering third party failures. Since INFLEX operates as an extension to the network abstraction provided

by IP, it can be used by all transport protocols. At the host, the proposed architecture allows transport

protocols to switch network paths at a timescale which avoids flow disruption and which can be trans-

parently integrated into existing congestion control mechanisms. Within the network, INFLEX provides

both greater insight into end-to-end path quality, assisting fault detection, and more control over flow

path assignment, enabling more effective fault recovery. INFLEX was implemented and verified exper-

imentally through modifications to both the TCP/IP network stack and a popular OpenFlow controller

[pox] and made publicly available.

8.2 Future work
While chapter 7 ties most of the work of the previous chapters together, some threads remain outstanding.

The most immediate concern is that the current implementation of INFLEX validated in section 7.4

does not yet allow for congestion balancing, described in chapter 4. Most of the required changes are

accounted for and described in detail in section 7.5. In the longer term, this work has raised several

higher-level issues which are outside the scope of this thesis and as such remain potential avenues for

future work:

8.2. Future work 109

System stability. Concerns over route flapping were raised both in chapter 4 and 7. With congestion

balancing the time period between updates of the flow split ratio is paced according to the sparse-

ness of loss, but chapter 4 falls short of providing either a formal proof for stability or extensive

enough evaluation. The changes introduced in chapter 7 however are likely to significantly reduce

the likelihood of route flapping, notwithstanding the limitations of OpenFlow raised in section 7.5.

Since in INFLEX resilience and efficiency are decoupled, an operator can afford to be more con-

servative in congestion balancing without forsaking responsiveness to failures. Lagging system

response in this manner does not affect an operator’s primary objective in adopting congestion

balancing: namely, keeping upstream providers in check over the quality-of-service they provide

and distributing traffic accordingly.

Quality-of-service. Due to its contentious nature, most of the work in this thesis meanders around the

subject of QoS. The INFLEX architecture however provides a clear path of deployment for some

degree of service differentiation. The policy mechanisms described in section 7.3 allow operators

to select which forwarding planes are exposed to individual hosts or flows. Further integration with

existing resource management tools within datacenters would allow such policies to be enforced

by tenant. Traditional approaches to QoS typically rely on operators provisioning their networks

according to preordained service types such as those requiring high throughput or low latency.

Within the design principles enunciated in chapter 3, a more reasonable solution would be to

apply division of labour in providing QoS. Instead of normalising the expected loss rate over

multiple paths as described in chapter 4, an operator could instead adjust congestion balancing to

provide differentiated tiers. Hosts would then be responsible in assembling higher quality service

from essentially parallel, best-effort forwarding planes according to their needs.

Extending transport. A counter-intuitive result from chapter 6 is that TCP is both becoming both in-

creasingly ossified, with even minor TCP extensions taking several years to deploy, and remark-

ably diverse, with applications asserting their own behaviour on how TCP performs. The legacy of

middlebox support dictates that any new transport protocol will effectively be implemented over

UDP or as extensions to TCP [HNR+11], such as the MPTCP. Neither of these approaches how-

ever tackles how to gain sufficient critical mass to ensure timely deployment. A clear line of future

work is instead to push the transport stack up to user space, where the functionality provided can

be tailored and potentially deployed alongside applications. While past work has addressed this

challenge [TNML93, PWTR12], there is no mature solution for providing user-level, backward-

compatible protocol stacks which can saturate existing line rates. At present however there is both

a technical foundation for such software, through work in fast packet I/O mechanisms such as

netmap [Riz12], and a practical need, as existing applications such as web caches attempt to scale

beyond the performance afforded by general-purpose network stacks.

In pushing network state outwards to the end-host and exposing path diversity in the process, the

re-feedback mechanisms explored in this thesis can be applied in exploring all of the above. The ver-

satility of path re-feedback in particular stands as likely the single most valuable legacy of this work.

8.2. Future work 110

Compared to both the ToS or DS fields, it is in many ways a stronger ideological heir to the original de-

sign philosophy of the DARPA internet protocols. In deliberating on the success of the latter in [Cla88],

Clark concludes by identifying shortcomings of the datagram model given requirements which had not

originally been contemplated:

While the datagram has served very well in solving the most important goals of the Internet,

it has not served so well when we attempt to address some of the goals which were further

down the priority list. For example, the goals of resource management and accountability

have proved difficult to achieve in the context of datagrams. As the previous section dis-

cussed, most datagrams are a part of some sequence of packets from source to destination,

rather than isolated units at the application level. However, the gateway cannot directly

see the existence of this sequence, because it is forced to deal with each packet in isolation.

Therefore, resource management decisions or accounting must be done on each packet sep-

arately. Imposing the datagram model on the internet layer has deprived that layer of an

important source of information which it could use in achieving these goals.

In the intervening quarter of a century, progress in resource management and accountability has

become predominantly driven by operators intent in coaxing existing practices from the telephone net-

work. Rather than assessing such mechanisms in terms of their impact on the evolution of the Internet,

practices such as the maintenance of flow state within the network or the prescription of classes of ser-

vice are instead often justified on technical feasibility alone. For this reason, the long term ramifications

of software-defined networking are particularly hard to discern given it offers a cleaner abstraction for

layering and composing many new forms of network functionality – some of which may add further

complexity to the datagram model. In establishing future research directions for retaining the inherent

properties of the Internet while accommodating resource management in [Cla88], Clark concludes:

It would be necessary for the gateways to have flow state in order to remember the nature of

the flows which are passing through them, but the state information would not be critical in

maintaining the desired type of service associated with the flow. Instead, that type of service

would be enforced by the end points, which would periodically send messages to ensure

that the proper type of service was being associated with the flow. (...) I call this concept

“soft state,” and it may very well permit us to achieve our primary goals of survivability

and flexibility, while at the same time doing a better job of dealing with the issue of resource

management and accountability.

This thesis went one step further, realising soft state as a workable technology rather than an archi-

tectural talking point and demonstrating its practicality through direct application to addressing existing

requirements. However, convincing a wider community that mechanisms such as path re-feedback can

greatly simplify traffic management remains unrealized and arguably the most significant outstanding

challenge within this work.

Appendix A

Acronyms and Abbreviations

ABR Available Bit Rate

ACK acknowledgement

AFCT Average Flow Completion Time

AIMD Additive Increase Multiplicative decrease

AIR Additive increase to rate

ALTO Application Layer Traffic Optimization

API Application Programming Interface

APNIC Asia-Pacific Network Information Centre

AQM Active Queue Management

ARPANET Advanced Research Projects Agency Network

AS Autonomous System

ASN Autonomous System Number

ATM Asynchronous Transfer Mode

BIC Binary Increase Congestion Control

BGP Border Gateway Protocol

CaTE Content-aware Traffic Engineering

CBR Constant Bit Rate

CDF Cumulative Distribution Function

CDN Content Distribution Network

CE Congestion Experienced

Appendix A. Acronyms and Abbreviations 112

CONEX Congestion Exposure

CTCP Compound TCP

cwnd congestion window

CV coefficient of variation

DCTCP Data Center TCP

DARPA Defense Advanced Research Projects Agency

DCCP Datagram Congestion Control Protocol

DEC Digital Equipment Corporation

DNS Domain Name System

DoS Denial-of-service

DPI Deep Packet Inspection

DS Differentiated Services

EC Efficiency Controller

ECN Explicit Congestion Notification

ECT ECN Capable Transport

ECMP Equal Cost Multipath

EFCI Explicit Forward Congestion Indication

FAST Fast AQM Scalable TCP

FC Fairness Controller

FEC Forwarding Equivalence Class

FFT Fast Fourier Transform

FLARE Flowlet Aware Routing Engine

FNE Feedback Not Established

FRR Fast Re-Route

GMT Greenwich Meridian Time

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

Appendix A. Acronyms and Abbreviations 113

IIJ Internet Initiative Japan

INF Interior Forwarding

IS-IS Intermediate System to Intermediate System

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

ILNP Identifier Locator Naming Protocol

IMP Interface Message Processor

I/O Input/Output

IP Internet Protocol

IPv4 IP Version 4

ISP Internet Service Provider

IXP Internet Exchange Point

JST Japan Standard Time

LAN Local Area Network

LECT Loss Exposure Capable Transport

LEx Loss Experienced

LEX Loss Exposure

LFA Loop-Free Alternate

LISP Locator/Identifier Separation Protocol

LSP Label Switched Path

LSR Label Switching Router

LSRR Loose Source and Record Route

MATE Multipath Adaptive TE

MAWI Measurement and Analysis of the WIDE Internet

MCR Minimum Cell Rate

MED Multi-Exit Discriminator

MPLS Multi Protocol Label Switching

Appendix A. Acronyms and Abbreviations 114

MPTCP Multipath TCP

MRC Multiple Routing Configurations

MSS Maximum Segment Size

NAT Network Address Translator

NCP Network Control Program

NPL National Physical Laboratory, UK

NTT Nippon Telegraph & Telephone Corporation

OCH One-click Hosting

OSPF Open Shortest Path First

OS operating system

P2P Peer-to-peer

P4P Provider portal for applications

PCR Peak Cell Rate

PEP Performance Enhancing Proxy

PREF Path Re-Feedback

PREFLEX Path Re-Feedback and Loss Exposure

QoS Quality of Service

RAND Research And Development Corporation

RECT Re-ECN Capable Transport

RIB Routing Information Base

RCP Rate Control Protocol

RDF Rate decrease factor

RED Random Early Detection

RIR Routing Information Registrar

RM Resource Management

RON Resilient Overlay Routing

RTO retransmission timeout

Appendix A. Acronyms and Abbreviations 115

RTT round trip time

SACK Selective acknowledgement

SCTP Stream control transport protocol

SDN Software-defined networking

ssthresh slow-start threshold

SOSR Scalable One-hop Source Routing

TCAM Ternary Content-addressable Memory

TE Traffic Engineering

TeXCP TE with XCP

TM Traffic Matrix

ToS Type of Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

VBR Variable Bit Rate

VCP Variable-structure congestion Control Protocol

VLAN Virtual LAN

VoIP Voice-over-IP

WIDE Widely Integrated Distributed Environment

WFQ Weighted Fair Queuing

XCP eXplicit Congestion Protocol

Bibliography

[ABH09] R Atkinson, S Bhatti, and S Hailes. ILNP: mobility, multi-homing, localised addressing

and security through naming. Telecommunication Systems, 42(3):273–291, 2009.

[ABKM02] D Andersen, H Balakrishnan, F Kaashoek, and R Morris. Resilient overlay networks.

ACM SIGCOMM Computer Communication Review, 32(1):66–66, 2002.

[ACF+12] B Ager, N Chatzis, A Feldmann, N Sarrar, and S Uhlig. Anatomy of a Large European

IXP. SIGCOMM ’12: Proceedings of the 2012 conference on Applications, technologies,

architectures, and protocols for computer communications, 2012.

[AGM+10] M Alizadeh, A Greenberg, D.A Maltz, J Padhye, P Patel, B Prabhakar, S Sengupta,

M Sridharan, C Faster, and D Maltz. DCTCP: Efficient packet transport for the commodi-

tized data center. SIGCOMM ’10: Proceedings of the 2010 conference on Applications,

technologies, architectures, and protocols for computer communications, 2010.

[AMD09] Demetris Antoniades, Evangelos P. Markatos, and Constantine Dovrolis. One-click host-

ing services: a file-sharing hideout. In Proceedings of the 9th ACM SIGCOMM con-

ference on Internet measurement conference, IMC ’09, pages 223–234, New York, NY,

USA, 2009. ACM.

[AMSU11] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig. Web con-

tent cartography. In Proceedings of the 11th ACM SIGCOMM conference on Internet

measurement conference, IMC ’11, pages 585–600, New York, NY, USA, 2011. ACM.

[AN11] S Alcock and R Nelson. Application flow control in youtube video streams. ACM SIG-

COMM Computer Communication Review, 41(2):24–30, 2011.

[app] AppEx IPEQ (IP End-to-End QoS). http://www.appexnetworks.com/

white-papers/IPEQ.pdf.

[Atl06] A Atlas. U-turn Alternates for IP/LDP Fast-Reroute. IETF Internet draft, draft-atlas-ip-

local-protect-uturn-03, 2006.

[Bak95] F Baker. RFC1812: Requirements for IP version 4 routers. IETF Request for Comments,

1995.

http://www.appexnetworks.com/white-papers/IPEQ.pdf
http://www.appexnetworks.com/white-papers/IPEQ.pdf

Bibliography 117

[Bar64a] P Baran. ON DISTRIBUTED COMMUNICATIONS: IV. PRIORITY, PRECEDENCE,

AND OVERLOAD. rand.org, Jan 1964.

[Bar64b] P Baran. On distributed communications networks. IEEE Transactions on Communica-

tions Systems, 12(1):1–9, 1964.

[BBB11] S Bauer, R Beverly, and A Berger. Measuring the state of ECN readiness in servers,

clients, and routers. Proceedings of the 11th ACM SIGCOMM conference on Internet

measurement, pages 171–180, 2011.

[BBC+98] S Blake, D Black, M Carlson, E Davies, Z Wang, and W Weiss. RFC 2475: An architec-

ture for differentiated services. 1998.

[BCL09] S Bauer, D Clark, and W Lehr. The evolution of internet congestion. Proceedings of the

37th Research Conference on Communication, Information, and Internet Policy, 2009.

[BF95] F Bonomi and K.W Fendick. The rate-based flow control framework for the available bit

rate ATM service. IEEE Network, 9(2):25–39, 1995.

[BFPS07] S Bryant, C Filsfils, S Previdi, and M Shand. IP Fast Reroute using tunnels. IETF Internet

draft, draft-bryant-ipfrr-tunnels-03, 2007.

[BJCG+05] B Briscoe, A Jacquet, C Di Cairano-Gilfedder, A Salvatori, A Soppera, and M Koyabe.

Policing congestion response in an internetwork using re-feedback. ACM SIGCOMM

Computer Communication Review, 35(4):277–288, 2005.

[BJMS08] B Briscoe, A Jacquet, T Moncaster, and A Smith. Re-ECN: Adding accountability for

causing congestion to TCP/IP. IETF Internet draft, draft-briscoe-tsvwg-re-ecn-tcp-05.

txt, 2008.

[BKL+09] C Bastian, T Klieber, J Livingood, J Mills, and R Woundy. RFC6057: Comcast’s Protocol-

Agnostic Congestion Management System. IETF Request for Comments, 2009.

[BLNS81] A.D Birrell, R Levin, R.M Needham, and M.D Schroeder. Grapevine: An exercise in

distributed computing. ACM SIGOPS Operating Systems Review, 15(5):178–179, 1981.

[BOP94] L.S Brakmo, S.W O’malley, and L.L Peterson. TCP Vegas: New techniques for con-

gestion detection and avoidance. ACM SIGCOMM Computer Communication Review,

24(4):24–35, 1994.

[BPS99] JCR Bennett, C Partridge, and N Shectman. Packet reordering is not pathological network

behavior. IEEE/ACM Transactions on Networking, 7(6):789–798, 1999.

[Bra89] Robert Braden. RFC-1122: Requirements for internet hosts. Request for Comments,

pages 356–363, 1989.

[Bri95] T Brisco. RFC1794: DNS support for load balancing. IETF Request for Comments, 1995.

Bibliography 118

[Bri07] B Briscoe. Flow rate fairness: Dismantling a religion. ACM SIGCOMM Computer Com-

munication Review, 37(2):63–74, 2007.

[Bus05] R Bush. Into the future with the internet vendor task force a very curmudgeonly view

or testing spaghetti: a wall’s point of view. ACM SIGCOMM Computer Communication

Review, 35(5):67–68, 2005.

[CAI] Cooperative Association for Internet Data Analysis (CAIDA). http://www.caida.

org/.

[CAL+13] Richard G. Clegg, Joao Taveira Araujo, Raul Landa, Eleni Mykoniati, David Griffin, and

Miguel Rio. On the relationship between fundamental measurements in TCP flows. In

Proceedings of IEEE ICC, 2013.

[CB08] D.R Choffnes and F.E Bustamante. Taming the torrent: a practical approach to reducing

cross-isp traffic in peer-to-peer systems. ACM SIGCOMM Computer Communication

Review, 38(4):363–374, 2008.

[Cer74] V Cerf. RFC635: Assessment of ARPANET protocols. IETF Request for Comments,

1974.

[CFEK06] K Cho, K Fukuda, H Esaki, and A Kato. The impact and implications of the growth

in residential user-to-user traffic. Proceedings of the 2006 conference on Applications,

technologies, architectures, and protocols for computer communications, page 218, 2006.

[CFEK08] K Cho, K Fukuda, H Esaki, and A Kato. Observing slow crustal movement in residential

user traffic. Proceedings of the 4th COnference on emerging Networking EXperiments

and Technologies (CoNEXT), page 12, 2008.

[CHM+03] J Crowcroft, S Hand, R Mortier, T Roscoe, and A Warfield. QoS’s downfall: at the bottom,

or not at all! Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS: What

have we learned, why do we care?, pages 109–114, 2003.

[CI05] V.G Cerf and R.E Icahn. A protocol for packet network intercommunication. ACM SIG-

COMM Computer Communication Review, 35(2):71–82, 2005.

[CL05] R.K.C Chang and M Lo. Inbound traffic engineering for multihomed ASs using as path

prepending. IEEE Network, 19(2):18–25, 2005.

[Cla88] D Clark. The design philosophy of the DARPA Internet protocols. ACM SIGCOMM

Computer Communication Review, 18(4):106–114, 1988.

[CLRS10] P Chhabra, N Laoutaris, P Rodriguez, and R Sundaram. Home is where the (fast) internet

is: flat-rate compatible incentives for reducing peak load. Proceedings of the 2010 ACM

SIGCOMM workshop on Home networks, pages 13–18, 2010.

http://www.caida.org/
http://www.caida.org/

Bibliography 119

[CMK00] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the WIDE

project. In Proceedings of the USENIX Annual Technical Conference, 2000.

[CWSB05] David Clark, John Wroclawski, Karen Sollins, and Robert Braden. Tussle in cyberspace:

defining tomorrow’s internet. IEEE/ACM Transactions on Networking, 13(3), Jun 2005.

[Dav72] D Davies. The control of congestion in packet-switching networks. IEEE Transactions

on Communications, 20(3):546–550, 1972.

[Day10] John Day. Patterns in Network Architecture: A Return to Fundamentals. Jan 2010.

[DD11] A Dhamdhere and C Dovrolis. Twelve Years in the Evolution of the Internet Ecosystem.

IEEE/ACM Transactions on Networking, 19(5):1420 – 1433, 2011.

[DKZSM05] N Dukkipati, M Kobayashi, R Zhang-Shen, and N McKeown. Processor sharing flows in

the internet. Quality of Service–IWQoS 2005, pages 271–285, 2005.

[DMG+10] M Dischinger, M Marcon, S Guha, KP Gummadi, R Mahajan, and S Saroiu. Glasnost:

Enabling End Users to Detect Traffic Differentiation. Proceedings of 7th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI), 2010.

[DRCC10] N Dukkipati, T Refice, Y Cheng, and J Chu. An argument for increasing TCP’s initial

congestion window. ACM SIGCOMM Computer Communication Review, Jan 2010.

[EJLW02] A Elwalid, C Jin, S Low, and I Widjaja. MATE: multipath adaptive traffic engineering.

Computer Networks, 40(6):695–709, 2002.

[FA08] S Floyd and M Allman. RFC5290: Comments on the Usefulness of Simple Best-Effort

Traffic. IETF Request for Comments, 2008.

[FBAF10] R Fontugne, P Borgnat, P Abry, and K Fukuda. MAWILab: combining diverse anomaly

detectors for automated anomaly labeling and performance benchmarking. Proceedings of

the 6th COnference on emerging Networking EXperiments and Technologies (CoNEXT),

page 8, 2010.

[FFEB05] P Francois, C Filsfils, J Evans, and O Bonaventure. Achieving sub-second IGP con-

vergence in large IP networks. ACM SIGCOMM Computer Communication Review,

35(3):35–44, 2005.

[FGL+00] A Feldmann, A Greenberg, C Lund, N Reingold, and J Rexford. Netscope: traffic engi-

neering for IP networks. IEEE Network, 14(2):11–19, 2000.

[FI08] B Ford and J Iyengar. Breaking up the transport logjam. 7th ACM SIGCOMM Workshop

on Hot Topics in Networks (HotNets), 2008.

[FJ93] S Floyd and V Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

Bibliography 120

[Flo94] S Floyd. TCP and explicit congestion notification. ACM SIGCOMM Computer Commu-

nication Review, 24(5):8–23, 1994.

[FRH+11] A Ford, C Raiciu, M Handley, S Barré, and J Iyengar. RFC6182: Architectural guidelines

for multipath TCP development. IETF Request for Comments, 2011.

[FT00] B Fortz and M Thorup. Internet traffic engineering by optimizing OSPF weights. Pro-

ceedings of the 19th IEEE International Conference on Computer Communications (IN-

FOCOM), 2:519–528 vol. 2, 2000.

[FT02] B Fortz and M Thorup. Optimizing OSPF/IS-IS weights in a changing world. IEEE

Journal on Selected Areas in Communications, 20(4):756–767, 2002.

[GCX+05] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong Zhang.

Measurements, analysis, and modeling of BitTorrent-like systems. In Proceedings of the

5th ACM SIGCOMM conference on Internet measurement, IMC ’05, pages 4–4, Berkeley,

CA, USA, 2005. USENIX Association.

[GGSS09] P Godfrey, I Ganichev, S Shenker, and I Stoica. Pathlet routing. ACM SIGCOMM Com-

puter Communication Review, 39(4):111–122, 2009.

[GMG+04] KP Gummadi, HV Madhyastha, SD Gribble, HM Levy, and D Wetherall. Improving the

reliability of internet paths with one-hop source routing. Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation-Volume 6, page 13, 2004.

[GQX+04] David Goldenberg, Lili Qiuy, Haiyong Xie, Yang Yang, and Yin Zhang. Optimizing cost

and performance for multihoming. SIGCOMM ’04: Proceedings of the 2004 conference

on Applications, technologies, architectures, and protocols for computer communications,

Aug 2004.

[GRF03] M Goyal, KK Ramakrishnan, and W Feng. Achieving faster failure detection in OSPF

networks. Proceedings of the 2003 IEEE International Conference on Communications

(ICC), 1:296–300 vol. 1, 2003.

[Hat73] W Hathaway. RFC512: More on lost message detection. IETF Request for Comments,

Jan 1973.

[HCR06] J He, M Chiang, and J Rexford. Can Congestion Control and Traffic Engineering Be

at Odds? Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE, pages

1–6, 2006.

[HFP+05] M.P Howarth, P Flegkas, G Pavlou, N Wang, P Trimintzios, D Griffin, J Griem, M Bou-

cadair, P Morand, and A Asgari. Provisioning for interdomain quality of service: the

MESCAL approach. IEEE Communications Magazine, 43(6):129–137, 2005.

Bibliography 121

[HFU+10] H Haddadi, D Fay, S Uhlig, A Moore, R Mortier, and A Jamakovic. Mixing Biases:

Structural Changes in the AS Topology Evolution. Traffic Monitoring and Analysis, pages

32–45, 2010.

[HLM+04] N Hu, LE Li, ZM Mao, P Steenkiste, and J Wang. Locating Internet bottlenecks: Al-

gorithms, measurements, and implications. SIGCOMM ’04: Proceedings of the 2004

conference on Applications, technologies, architectures, and protocols for computer com-

munications, pages 41–54, 2004.

[HNR+11] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, and

Hideyuki Tokuda. Is it still possible to extend tcp? In Proceedings of the 2011 ACM

SIGCOMM conference on Internet measurement conference, IMC ’11, pages 181–194,

New York, NY, USA, 2011. ACM.

[HRX08] S Ha, I Rhee, and L Xu. CUBIC: A new TCP-friendly high-speed TCP variant. ACM

SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[HS02] H.Y Hsieh and R Sivakumar. pTCP: An end-to-end transport layer protocol for striped

connections. Proceedings of the 10th IEEE International Conference on Network Proto-

cols (ICNP), pages 24–33, 2002.

[HSM12] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement problem.

In 1st ACM SIGCOMM Workshop on Hot Topics in Software-defined Networks (HotSDN),

2012.

[Hui95] C Huitema. Multi-homed TCP. IETF Internet draft, draft-huitema-multi-homed-01, 1995.

[IAS06] J.R Iyengar, P.D Amer, and R Stewart. Concurrent multipath transfer using SCTP mul-

tihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking,

14(5):951–964, 2006.

[Jac88] V Jacobson. Congestion avoidance and control. SIGCOMM ’88: Proceedings of the

1988 conference on Applications, technologies, architectures, and protocols for computer

communications, Aug 1988.

[Jai96] R Jain. Congestion control and traffic management in ATM networks: Recent advances

and a survey. Computer networks and ISDN systems, 28(13):1723–1738, 1996.

[JBB92] Van Jacobson, Robert Braden, and David Borman. TCP extensions for high performance.

RFC1323, 1992.

[JBM08] A Jacquet, B Briscoe, and T Moncaster. Policing freedom to use the internet resource pool.

Proceedings of the 4th COnference on emerging Networking EXperiments and Technolo-

gies (CoNEXT), page 71, 2008.

Bibliography 122

[JID+04] S Jaiswal, G Iannaccone, C Diot, J Kurose, and D Towsley. Inferring TCP connection

characteristics through passive measurements. Proceedings of the 23th IEEE International

Conference on Computer Communications (INFOCOM), 3:1582–1592 vol. 3, 2004.

[JID+07] S Jaiswal, G Iannaccone, C Diot, J Kurose, and D Towsley. Measurement and classifi-

cation of out-of-sequence packets in a tier-1 IP backbone. IEEE/ACM Transactions on

Networking, 15(1):54–66, 2007.

[JWHC11] C Joe-Wong, S Ha, and M Chiang. Time-dependent broadband pricing: Feasibility and

benefits. Proceedings of the 31st International Conference on Distributed Computing

Systems (ICDCS), pages 288–298, 2011.

[KD11] Partha Kanuparthy and Constantine Dovrolis. Shaperprobe: end-to-end detection of isp

traffic shaping using active methods. In Proceedings of the 2011 ACM SIGCOMM con-

ference on Internet measurement conference, IMC ’11, pages 473–482, New York, NY,

USA, 2011. ACM.

[Kel03] T Kelly. Scalable TCP: Improving performance in highspeed wide area networks. ACM

SIGCOMM Computer Communication Review, 33(2):83–91, 2003.

[KF07] D Katabi and Aaron Falk. Specification for the Explicit Control Protocol (XCP). IETF

Internet draft, draft-falk-xcp-spec-03. txt, 2007.

[KHR02] D Katabi, M Handley, and C Rohrs. Congestion control for high bandwidth-delay product

networks. ACM SIGCOMM Computer Communication Review, 32(4):89–102, 2002.

[KKDC05] S Kandula, D Katabi, B Davie, and A Charny. Walking the tightrope: Responsive yet

stable traffic engineering. ACM SIGCOMM Computer Communication Review, 35(4):264,

2005.

[KL00] M Kodialam and TV Lakshman. Minimum interference routing with applications to

MPLS traffic engineering. Proceedings of the 19th IEEE International Conference on

Computer Communications (INFOCOM), 2:884–893 vol. 2, 2000.

[Kle75] Leonard Kleinrock. Queueing Systems. I: Theory, 1975.

[KMT98] FP Kelly, AK Maulloo, and DKH Tan. Rate control for communication networks: shadow

prices, proportional fairness and stability. Journal of the Operational Research society,

49(3):237–252, 1998.

[KMT07] P Key, L Massoulie, and P.D Towsley. Path Selection and Multipath Congestion Control.

Proceedings of the 26th IEEE International Conference on Computer Communications

(INFOCOM), pages 143–151, 2007.

Bibliography 123

[Kuz05] A Kuzmanovic. The power of explicit congestion notification. SIGCOMM ’05: Proceed-

ings of the 2005 conference on Applications, technologies, architectures, and protocols

for computer communications, page 72, 2005.

[KV05] F Kelly and T Voice. Stability of end-to-end algorithms for joint routing and rate control.

ACM SIGCOMM Computer Communication Review, 35(2):12, 2005.

[LF05] R Lance and I Frommer. Round-trip time inference via passive monitoring. ACM SIG-

METRICS Performance Evaluation Review, 33(3):32–38, 2005.

[LFFM12] D Lewis, V Fuller, D Farinacci, and D Meyer. Locator/ID Separation Protocol (LISP).

IETF Internet Draft, draft-ietf-lisp-23, Jan 2012.

[LH06] K Lan and J Heidemann. A measurement study of correlations of internet flow character-

istics. Computer Networks, 50(1):46–62, 2006.

[LIJM+10a] C Labovitz, S Iekel-Johnson, D McPherson, J Oberheide, and F Jahanian. Internet inter-

domain traffic. ACM SIGCOMM Computer Communication Review, 40(4):75–86, 2010.

[LIJM+10b] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and Farnam Ja-

hanian. Internet inter-domain traffic. ACM SIGCOMM Computer Communication Review,

41(4):–, August 2010.

[LJC08] P Laskowski, B Johnson, and J Chuang. User-directed routing: from theory, towards prac-

tice. Proceedings of the 3rd international workshop on Economics of networked systems,

pages 1–6, 2008.

[LMJ98] C Labovitz, G.R Malan, and F Jahanian. Internet routing instability. IEEE/ACM Transac-

tions on Networking, 6(5):515–528, 1998.

[Lot92] M Lottor. RFC1296: Internet Growth (1981-1991). IETF Request for Comments, 1992.

[LR08] N Laoutaris and P Rodriguez. Good Things Come to Those Who (Can) Wait or how

to handle Delay Tolerant traffic and make peace on the Internet. 7th ACM SIGCOMM

Workshop on Hot Topics in Networks (HotNets), 2008.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-

nifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling innovation in

campus networks. ACM SIGCOMM Computer Communication Review, 38(2), March

2008.

[MABW09] T Moncaster, J Araujo, S Blake, and R Woundy. The Need for Congestion Exposure in the

Internet. IETF Internet draft, draft-moncaster-congestion-exposure-problem-01, 2009.

[Mat09] M Mathis. Relentless congestion control. Prooceedings of PFLDNet, 2009.

[max12] MaxMind GeoLite City. http://www.maxmind.com/app/geolitecity, 2012.

Bibliography 124

[MEFV08] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala. Path splicing.

SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008 conference on Data commu-

nication, Aug 2008.

[MMC00] H. S. Martin, A. McGregor, and J. G. Cleary. Analysis of internet delay times. In Pro-

ceedings of the Passive and Active Measurements Workshop (PAM), 2000.

[MMV95] J.K MacKie-Mason and H.R Varian. Pricing congestible network resources. IEEE Journal

on Selected Areas in Communications, 13(7):1141–1149, 1995.

[Moc87] P Mockapetris. RFC 1035: Domain Names-Implementation and Specification. IETF

Request for Comments, 1987.

[MZPP08] R Mahajan, M Zhang, L Poole, and V Pai. Uncovering performance differences among

backbone ISPs with Netdiff. Proceedings of the 5th USENIX Symposium on Networked

Systems Design and Implementation, pages 205–218, 2008.

[Nag84] J Nagle. RFC896: Congestion control in IP/TCP internetworks. IETF Request for Com-

ments, 1984.

[ns3] Network Simulator 3. http://www.nsnam.org.

[Odl04] A Odlyzko. Pricing and architecture of the Internet: Historical perspectives from telecom-

munications and transportation. Proceedings of the 32th Research Conference on Com-

munication, Information, and Internet Policy, 2004.

[OZP+06] R Oliveira, B Zhang, D Pei, R Izhak-Ratzin, and L Zhang. Quantifying path exploration in

the internet. Proceedings of the 6th ACM SIGCOMM conference on Internet measurement,

pages 269–282, 2006.

[OZPZ09] R Oliveira, B Zhang, D Pei, and L Zhang. Quantifying path exploration in the internet.

IEEE/ACM Transactions on Networking, 17(2):445–458, 2009.

[PAS99] V Paxson, M Allman, and W Stevens. RFC2581: TCP congestion control. IETF Request

for Comments, 1999.

[PC09] J Peterson and A Cooper. Report from the IETF Workshop on Peer-to-Peer (P2P) Infras-

tructure, May 28, 2008. Center for Democracy & Technology, 2009.

[PFS+12] Ingmar Poese, Benjamin Frank, Georgios Smaragdakis, Steve Uhlig, Anja Feldmann, and

Bruce Maggs. Enabling content-aware traffic engineering. SIGCOMM Comput. Commun.

Rev., 42(5):21–28, September 2012.

[Pos73] J Postel. RFC516: Lost message detection. IETF Request for Comments, Jan 1973.

[Pos80] J Postel. DoD standard transmission control protocol. 1980.

http://www.nsnam.org

Bibliography 125

[Pos81] J Postel. Internet control message protocol. 1981.

[Pou73] L Pouzin. Presentation and major design aspects of the CYCLADES computer network.

NATO Advanced Study Institute on Computer Communication Networks, 1973.

[pox] POX OpenFlow Controller. http://www.noxrepo.org/pox.

[PPK+09] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and Scott

Shenker. Open vSwitch: Extending networking into the virtualization layer. In 8th ACM

SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2009.

[PSA05] P Pan, G Swallow, and A Atlas. RFC4090: Fast reroute extensions to RSVP-TE for LSP

tunnels. RFC4090, May, 2005.

[PWTR12] B. Penoff, A. Wagner, M. Tuxen, and I. Rungeler. Portable and Performant Userspace

SCTP Stack. In Proceedings of the 21st International Conference on Computer Commu-

nications and Networks (ICCCN), pages 1–9, 2012.

[QGM+09] F Qian, A Gerber, Z.M Mao, S Sen, O Spatscheck, and W Willinger. TCP revisited: a

fresh look at TCP in the wild. Proceedings of the 9th ACM SIGCOMM conference on

Internet measurement, pages 76–89, 2009.

[QPS+03] B Quoitin, C Pelsser, L Swinnen, O Bonaventure, and S Uhlig. Interdomain traffic engi-

neering with BGP. IEEE Communications Magazine, 41(5):122– 128, 2003.

[QTUB04] B Quoitin, S Tandel, S Uhlig, and O Bonaventure. Interdomain traffic engineering with

redistribution communities. Computer Communications, 27(4):355–363, 2004.

[RCC+11] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath Ragha-

van. Tcp fast open. In Proceedings of the 2011 ACM CoNEXT Conference, CoNEXT ’11,

pages 21:1–21:12, New York, NY, USA, 2011. ACM.

[RCG+10] Fernando M. V. Ramos, Jon Crowcroft, Richard J. Gibbens, Pablo Rodriguez, and Ian H.

White. Channel smurfing: Minimising channel switching delay in iptv distribution net-

works. In ICME, pages 1327–1332. IEEE, 2010.

[RFB01] K Ramakrishnan, S Floyd, and D Black. RFC3168: The Addition of Explicit Congestion

Notification (ECN) to IP. IETF Request for Comments, 2001.

[Riz12] L. Rizzo. Revisiting Network I/O APIs: The netmap Framework. ACM Queue, 10(1):30–

39, Jan. 2012.

[RJ90] KK Ramakrishnan and R Jain. A binary feedback scheme for congestion avoidance in

computer networks. ACM Transactions on Computer Systems (TOCS), 8(2):158–181,

1990.

http://www.noxrepo.org/pox

Bibliography 126

[RKS07] S Rewaskar, J Kaur, and FD Smith. A performance study of loss detection/recovery in

real-world TCP implementations. Proceedings of the 15th IEEE International Conference

on Network Protocols (ICNP), pages 256–265, 2007.

[RLL+11] A Rao, A Legout, Y Lim, D Towsley, C Barakat, and W Dabbous. Network characteristics

of video streaming traffic. Proceedings of the 7th COnference on emerging Networking

EXperiments and Technologies (CoNEXT), page 25, 2011.

[RNS+12] Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio Salvador,

Carlos Nilton Araujo Corrêa, Sidney Cunha de Lucena, and Robert Raszuk. Revisiting

routing control platforms with the eyes and muscles of software-defined networking. In

1st ACM SIGCOMM Workshop on Hot Topics in Software-defined Networks (HotSDN),

2012.

[rou] Route Views Project Page. http://www.routeviews.org/.

[RVC01] E Rosen, A Viswanathan, and R Callon. RFC3031: Multiprotocol Label Switching Ar-

chitecture. IETF Request for Comments, 2001.

[SB10] M Shand and S Bryant. RFC5714: IP Fast Reroute Framework. IETF Request for Com-

ments, 2010.

[SCBRSP12] Josep Sanjuàs-Cuxart, Pere Barlet-Ros, and Josep Solé-Pareta. Measurement based anal-

ysis of one-click file hosting services. Journal of Network and Systems Management,

20(2):276–301, 2012.

[SKK04] S Sinha, S Kandula, and D Katabi. Harnessing TCP’s burstiness with flowlet switching.

3rd ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2004.

[SPB11] M Shand, S Previdi, and S Bryant. IP fast reroute using not-via addresses. IETF Internet

Draft, draft-ietf-rtgwg-ipfrr-notvia-addresses-09, 2011.

[SRC84] J.H Saltzer, D.P Reed, and D.D Clark. End-to-end arguments in system design. ACM

Transactions on Computer Systems (TOCS), 2(4):277–288, 1984.

[SSB+04] S Shakkottai, R Srikant, N Brownlee, A Broido, and K C Claffy. The RTT distribution

of TCP flows in the Internet and its impact on TCP-based flow control. Tech Report

Cooperative Association for Internet Data Analysis (CAIDA), 2004.

[Ste97] W.R Stevens. RFC2001: TCP slow start, congestion avoidance, fast retransmit, and fast

recovery algorithms. IETF Request for Comments, 1997.

[Ste07] R. Stewart. RFC4960: Stream Control Transmission Protocol, September 2007. Updated

by RFCs 6096, 6335.

http://www.routeviews.org/

Bibliography 127

[Sun77] CA Sunshine. Source routing in computer networks. ACM SIGCOMM Computer Com-

munication Review, 7(1):29–33, 1977.

[TAC+08] R Torvi, A Atlas, G Choudhury, A Zinin, and B Imhoff. RFC5286: Basic Specification

for IP Fast Reroute: Loop-Free Alternates. IETF Request for Comments, Jan 2008.

[TH00] D Thaler and C Hopps. RFC2991: Multipath Issues in Unicast and Multicast Next-Hop

Selection. IETF Request for Comments, 2000.

[Tha10] Dave Thaler. Evolution of the IP Model. IETF Internet draft, draft-iab-ip-model-

evolution-02, 2010.

[TMSV03] R Teixeira, K Marzullo, S Savage, and GM Voelker. In search of path diversity in ISP

networks. Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement,

page 318, 2003.

[TNML93] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Implementing network protocols at

user level. IEEE/ACM Transactions on Networking, 1(5):554–565, 1993.

[TS06] Kun Tan and Jingmin Song. A compound tcp approach for high-speed and long distance

networks. In Proceedings of the 25th IEEE International Conference on Computer Com-

munications (INFOCOM), 2006.

[UB04] S Uhlig and O Bonaventure. Designing BGP-based outbound traffic engineering tech-

niques for stub ASes. ACM SIGCOMM Computer Communication Review, 34(5):106,

2004.

[vis] Description of the Receive Window Auto-Tuning feature for HTTP traffic on Windows

Vista-based computers. http://support.microsoft.com/kb/947239.

[VLL05] B Veal, K Li, and D Lowenthal. New methods for passive estimation of TCP round-trip

times. Proceedings of Passive and Active Measurment Workshop (PAM), pages 121–134,

2005.

[WHB08] D Wischik, M Handley, and MB Braun. The resource pooling principle. ACM SIGCOMM

Computer Communication Review, 38(5):47–52, 2008.

[WHPH08] Ning Wang, Kin Ho, G Pavlou, and M Howarth. An overview of routing optimization

for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1):36–56,

2008.

[WJLH06] D.X Wei, C Jin, S.H Low, and S Hegde. FAST TCP: motivation, architecture, algorithms,

performance. IEEE/ACM Transactions on Networking, 14(6):1246–1259, 2006.

[WRGH11] D Wischik, C Raiciu, A Greenhalgh, and M Handley. Design, implementation and eval-

uation of congestion control for multipath TCP. Proceedings of 8th USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2011.

http://support.microsoft.com/kb/947239

Bibliography 128

[WW99] Yufei Wang and Zheng Wang. Explicit routing algorithms for Internet traffic engineer-

ing. Proceedings of the 8th International Conference on Computer Communications and

Networks (ICCCN), pages 582–588, 1999.

[WWZ01] Y Wang, Z Wang, and L Zhang. Internet traffic engineering without full mesh overlaying.

Proceedings of the 20th IEEE International Conference on Computer Communications

(INFOCOM), 1:565–571 vol. 1, 2001.

[XHBN00] X Xiao, A Hannan, B Bailey, and L.M Ni. Traffic Engineering with MPLS in the Internet.

IEEE Network, 14(2):28–33, 2000.

[XHR04] L Xu, K Harfoush, and I Rhee. Binary increase congestion control (BIC) for fast long-

distance networks. Proceedings of the 23th IEEE International Conference on Computer

Communications (INFOCOM), 4:2514–2524 vol. 4, 2004.

[XR06] Wen Xu and Jennifer Rexford. Miro: multi-path interdomain routing. ACM SIGCOMM

Computer Communication Review, 36(4):171–182, August 2006.

[XSSK08] Yong Xia, L Subramanian, I Stoica, and S Kalyanaraman. One More Bit is Enough.

IEEE/ACM Transactions on Networking, 16(6):1281–1294, 2008.

[XYK+08] H Xie, Y.R Yang, A Krishnamurthy, Y.G Liu, and A Silberschatz. P4p: provider portal for

applications. ACM SIGCOMM Computer Communication Review, 38(4):351–362, 2008.

[Yan03] X Yang. NIRA: A new Internet routing architecture. ACM SIGCOMM Computer Com-

munication Review, 33(4):312, 2003.

[YW06] Xiaowei Yang and David Wetherall. Source selectable path diversity via routing deflec-

tions. SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technologies,

architectures, and protocols for computer communications, Aug 2006.

[ZBPS02] Y Zhang, L Breslau, V Paxson, and S Shenker. On the characteristics and origins of

internet flow rates. ACM SIGCOMM Computer Communication Review, 32(4):322, 2002.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Contributions
	Publications
	Thesis Outline

	Resource pooling
	Pooling end-to-end: congestion management
	Historical precursors
	TCP congestion control
	Traffic shaping
	Explicit congestion control
	Congestion exposure

	Pooling across multiple paths: traffic balancing
	Traffic engineering
	Resilient routing
	Higher layer approaches
	Rethinking traffic management

	A mutualistic resource pooling architecture
	Resolving the tussle
	PREFLEX
	Loss Exposure
	Path re-feedback

	Closing the loop

	Congestion aware traffic engineering
	A model for congestion balancing
	Understanding the design space
	Balancing between conservative and loss-driven
	Tuning update interval

	Performance Analysis
	Methodology
	Varying bottleneck distribution

	Conclusions

	A longitudinal analysis of transit traffic
	Related work
	Dataset
	Tracing TCP Metrics
	Aggregating by Location

	RTT estimation
	Utility-Based RTT Recovery
	Comparing recovery algorithms

	Macroscopic traffic trends
	Geographic distribution
	AS-level distribution
	Delay

	TCP flow rate limitations
	Flow classification
	Application paced
	Host limited
	Receiver shaped

	Revisiting assumptions
	Throughput is primarily shaped by TCP
	Throughput is primarily sender driven
	Throughput is correlated with flow size
	Throttling primarily affects heavy hitters

	Conclusions

	Network support for transport resilience
	Design considerations
	Latency
	Deployment
	Multipath routing

	OpenFlow background
	Architecture
	INFLEX end-hosts
	The edge switch
	The inflector

	Analysis
	Sender-side resilience
	Receiver-side resilience
	Network overhead

	Unifying approaches
	Traffic management
	Congestion management

	Conclusions

	Conclusions
	Summary of contributions
	Internet traffic characterisation
	Architectural contributions
	Resource pooling enhancements

	Future work

	Appendices
	Acronyms and Abbreviations
	Bibliography

