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Abstract— The Rate Control Protocol (RCP) [1] is an explicit 2000 ownd O
congestion control mechanism that, amongst other charactis- 1800 | ownd_Ltr -
tics, reduces the average flow completion time (AFCT) metric 1600 5 2%25:%5
by one order of magnitude when compared to TCP NewReno. 1400 ‘ewnd_4.tr" -

RCP reduces the AFCT by allowing new flows to instantly use
the same rate as existing flows in the network. This results in
link utilization temporarily exceeding available capacity when
flows enter a network, inducing queue build-up. As such, RCP
is particularly vulnerable to flash crowds whereby a system
witnesses a significant increase in the number of flows over a
short period of time. In this paper we analyze RCP’s response i j
to varying rates of increase in the number of flows. We conclue 0 3 6 9 12

that, for a given arrival growth rate, RCP is able to stabilize Time (seconds)

queue length as long as this rate does not exceed well defined

limits. We quantify the queue length required to stabilize te Fig. 1. Flow congestion windows. A new flow enters the netwevkry 3
system response and the limit arrival growth rate using a moel seconds. Whenever a flow_enters the network t_here_ is a pefidm:m?ased
of RCP that incorporates the effect of new flow arrivals. Findly, ~dueuing delay due to capacity overshoot. The spikes in thgestion window
we validate our analysis through ns-2 simulations. and the slow convergence reflect this increased queuing.dela
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where the number of participants, read flows, is likely to
increase significantly over a short period of time.
We introduce the variation of the number of flows in the

In recent years congestion control algorithms which re§duations that characterize RCP’s behaviour, and by dbig t
on routers to adjust the rate of connections have becoiie are able to define system steady-state properties. We find
increasingly researched. Amongst these explicit congestithat there is a maximum growth rate of the number of flows
control algorithms is the Rate Control Protocol (RCP) [1for which the bottleneck queue will stabilize. We find this
An RCP router calculates a rate that is to be used by all flowtabilizing queue length and also the maximum growth rate
bottlenecked in that router. This rate is updated accortiingfor which the system is stable. These results are useful to
the link utilization and the current queue length of the eput the design of an RCP system as parameters may be chosen
By specifying a single rate across all flows, the RCP systefh order to make RCP more robust in the presence of flash
exhibits (1) perfect flow bandwidth fairness at all times anérowds.
(2) removes the adaptation phase that new flows typically The paper structure is as follows: in this section we magivat
go through in other congestion control protocols. The tes@nd explain the scope of our study. In Section Il we model the
is that the average flow completion time (AFCT) is greatlyariation of the number of flows and present our analysis, and
reduced, i.e. by one order of magnitude compared to NéwSection Il we validate the results from the analysis tigio
Reno, which is argued by RCP authors as being the rigﬁﬁ-Z simulations. We conclude the paper in Section IV.
metric for congestion control [2] since most flows in the
Internet have a short duration. The reduced AFCT comes
at the cost of utilization overshoot whenever the number of
flows in the system increases - and under-utilization when th The RCP router periodically calculates a common r&te
inverse happens. This reflects the design philosophy behitodbe used by all flows. This rate is passed to the sources
RCP [3], which assumes it works well for most cases, whilsising the rate field of a header placed between the network
not performing as successfully under extreme, rare canditi and transport headers. The RCP router only fills the rate field
In this paper we dig exactly into one of these cases wheafdéts common rateR is lower than the value contained in the
RCP might struggle to perform. The objective of the papeate field. As a result, on arrival the rate field will have been
is not to detract RCP, far from it, but rather to present dilled by the path bottleneck. The rat is updated by the
analysis and results that help us predict RCP behaviourrundauter at every control interval so a fraction of the unused
specific, extreme conditions and, based on our findings,raiddandwidth is distributed amongst flows and a portion of the
the design of a robust RCP system. We study the significatanding queue is draine® is defined as:
and persistent increase in the number of flows in a network,
also known adlash crowdsand its implications on RCP. Flash (

I. INTRODUCTION

II. FLASH CROWD EFFECT INRCP

crowds appear typically at the beginning of a popular event,R(t) = R(t—d)+
e.g. sports match, live concert streamir§jashdotarticle,
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wherey(t) is the sum of the incoming bandwidth, is the 2Cdy B
delay of the communication between the router and the seurcg ] .
(an approximate average at least), afids the link capacity. 2 %% f 7 :
a, andg are system constants tuned to ensure system stabil@y 7 4 B
for any capacity, delay and number of sourc&srepresents o C : ’
an estimate of the number of flows traversing the route%
which is calculated by the router aS(¢) = 1@{2((2:‘;)). The &
accuracy of the estimate of the number of flows is of extrem§
relevance, as it directly impacts network utilization. Mover, 01110176 0202 0429 0.667
if during an update interval the number of flows entering the L (NewFlows/OldFlows)
network differs from the number of flows leaving the networlﬁﬁig. 2. The compensation queye required to neutralize a growth rafe

link utilization will probably also differ from 1. To better of the number of flows for various values gf

understand this phenomenon let’s think on what happens when

flows enter the network. The new flows will be informed to use

a certain rateR that was calculated taking into account lesblote that we define the growth rate of the number of flows as
flows. As a result, the entrance of the new flow will causeeing normalized to the system deldyAs such it represents
temporary over-utilization of the network, leading to geeuthe ratio between the number of new flows during an interval
build-up, until the estimate of the number of flows in th@f d seconds and the number of active flows in the previous
router becomes more accurate, aRds set accordingly. Fig. interval.

1 refers to an experiment where a new flow enters the network

every 3 seconds. After the arrival of a new flow there is g Finding the Limits of RCP

increase in the congestion window of all flows, caused by theT derstand the limits of RCP. | its behaviour i
increase in queuing delay due to over-utilization, and taen 0 understand e fimits o » We analyze Iis behaviourin

few RTTs are required until RCP drains the bottleneck queﬂ%‘?_ presence of a constant_growth rate of the number of flows.
and adjusts the common rafe with the correct number of T 'Sbrl.nehans IZat we con5|de[r(t) :dLI.tO. be confstagéc;lnd
flows. Furthermore, we can see that the effect of the arriaiaoion Steady-state properties and limits as a fun

of new flows is proportional to the ratio between new an or example, considering = 0.5 resu!ts in an increase in the
existing flows. number of flows by 50% over each interval #fseconds. As

we will show soon enougt, itself influences the system delay

d and for that reason we will also define stationary properties

A. Modeling Flow Arrivals of the system as a function dfy. L, is a particular case
An RCP system can be studied using a fluid model. Fo¥ L calculated for the network minimum delaly which is

lowing Eqg. 1, and a) assuming a constant number of flowenstant, allowing us to define flow growth more objectively.

in the network, b) considering all flows have the same RTT We start the analysis by assuming steady-state conditions

and c) ignoring queue boundaries, the set of equations beléfvthe system represented by Eq. 6, 2, 4, 5. Steady-state

characterizes an RCP system: conditions arey(t) = C, ¢(t) = 0, L(t) = L. Under these
conditions, we can rewrite Eq. 6 as:

tes)

=
Iy
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q(t —d
Fiy=a-(©—yit—d)-5- 12D ) ey o
T D)
i) = £ hich, usingd = do + £ f ts in:
y(t) = — (8) which, usingd = dp + & from Eq.4, results in:
C-L
. = ————-d 9
i(t) =yt~ @) ©=G-nL+s ©
where the system delaycan be expressed by the sum of théheredy is the network RTT excluding queuing delay at the
propagation RTTd, and queuing delay: router. This is an interesting result, assuming that théesys
is able to achieve steady-state. In the presence of a canstan
d—do+ q(t) (5) growth rate in the number of flows in the network, the queue
- C length of the bottleneck router will grow to a point where it

To introduce the effect of the variation of the number of flowg1eutralizes the effect of the arrival of new flows. We calbthi
we need to write Eq. 3 as: queue length theompensation queus ¢.. The compensation

gueueg. required to balance flow growth rate is proportional
N . . _ to the network bandwidth delay produ€tdy, and grows with
y(t) = d () + d y(t—d) () the flow growth ratel., while decreasing with an increase of
whereL(t) represents the growth rate of the number of flowg}- An interesting remark is that the parameterdoes not
influence the compensation queue. This is somewhat expected
L) = N(t)— N(t—d) 5 asa controls the weight given to the spare bandwidth in the
(t) = N(t —d) @ feedback given to the sources. In steady-state the linklli fu

1+ L(1) L(t)



4.5e+06 g — constantL or, in other words, if an exponential growth of the
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I /OldFI i |I=d,=0. ..
Lo (NewFlows/OldFlows) (on interval=dg=0-15) The model we used to study RCP response to the variation

of the number of flows has two major simplifications. It
Fig. 3. The compensation queyg required to neutralize a growth rafey  copsiders that all flows have the same RTT and does not
of the number of flows for various values of This refers to the particular . . . g .
case ofC = 100 Mbit/s anddp = 0.1 s. consider queue boundaries. We don't expect significant@npa
from these simplifications, apart from the obvious - i.e. if
the queue buffer is smaller than the compensation qugue
utilized, thus there is no spare bandwidth. Another intérgs required, the RCP system will not be able to neutralize the
conclusion is that the RCP system can only sustain the flaftdish crowd, resulting in an ever increasing packet drop rate
crowd if (3—1)- L+ > 0. If this condition is not metg. will A deeper study on the implications such simplifications have
tend to infinity, meaning that utilization will be persistgn should be the subject of future work.
above the network capacity and the system will be unstableThe main limitation of our analysis of the RCP model is
Fig. 2 showsg. as a function ofL, 8. The stability limits that we assumed convergence to the steady-state. This may
are shown in the figure as vertical lines. We have seen thatt happen however, as the RCP system is only stable for
the RCP system tries to neutralize the growth of the numbegrtain pairs of values of,, 3. Therefore, the results of our
of flows by building up the queue, stabilizing queue lengthnalysis are only valid for pairs of, 3 that enable system
up to a certain growth limit. These results also show a moseability. A previous study [4] has defined the areaxgfs for
subtle connection. We have established a relationshipesstw which RCP is stable.
the compensation queyg and the growth raté.. The growth
rate L, however, is defined as the growth rate of the number Bf
flows eachd seconds, whilel itself depends of.. This does
not allow us to define a constant growth rate. To overcomeWe have derived steady-state properties and conditions as a
this problem we defind.g, which has the same meaning agunction of a constant growth rate of the number of flaiys
L, but refers to the growth on a fixed interval @f seconds. As such we can calculate the compensation qugui the
Additionally, we can represerit as a function ofL: number of flows in the network grows by a factor (@f+ L)
in each interval ofly seconds - an exponential increase. It is
0 (10) equally interesting to understand how an RCP system respond
to other types of growth of the number of flows, namely in
the presence of typical flow arrival distributions. To thigde
e we need to find how.((¢) behaves for these distributions. We
L=(1+1Lo) =0 —1 (11) analyzelL(t) for 3 types of flow arrival distributions: Laplace,
do, as previously stated, is the network RTT excluding queuinermal, and Erlang. The Laplace and the Normal distribution
delay. Using this new definition of in Eq. 9 we obtain: refer to the case of scheduled events, e.g. sports matchiewhe
arrivals may start before the event. The Erlang distribbutio
L4 te_ refers to the case of unplanned events, &lgshdotarticle,
c- [(1 + Lo) "o — 1} where there is a strong ramp-up reaction shortly after teatev
B-1)- [(1 4 Lo) T — 1} wl do (12) geeurs, which then fades away in time. The probability dgnsi

function (PDF) of the Laplace distribution is defined as:

and now we have, defined only in terms of initial conditions, 1 -
allowing us to determine, for a given constant growth rate of flx)==-e 7 (13)
the number of flows. Unfortunately, this equation is not lgasi 2b
reducible to a closed form so we will just leave it as is, sujvi the PDF of the Normal distribution is defined as:
it numerically. The resulting plot is shown in Fig. 3, which 1 o,
exhibits a similar pattern to that of Fig. 2. One differense i flz) = ——— .e—(Z.’U“z) (14)
the marking of stability limits. In Fig. 3 the maximum y vexte o-vV2-m
of each curve corresponds to the highest growth fatdor the PDF of the Erlang distribution is defined as:
which RCP is able to absorb the flash crowd.

In conclusion our analysis shows that, within certain lanit e gh=1 . g=Aw

RCP is able to stabilize queue length even in the presence of a @)= (k—1)! (15)

Response to Typical Arrival Distributions

le“

1+L=(1+Lo)

upon simplification:
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based on the existing XCP source code included in the ns-2
package. The setup, shown in 6, is composed of wired nodes
connected to a sinl§ via a router,R. To ensure the same

15 20 25 pottleneck is shared across all flows, nodes connectefl to
Time (seconds) have twice the bandwidth available betwerand S, which

was set at 100Mbit/s. The propagation deldy,was set to
25ms unless otherwise stated, resulting in a total round tri
time of 100ms for each flow.

PDF

200Mbi t/ s
dns

100Mbi t/ s
dns

Arrival Time (seconds)

Fig. 4. The relationship betweehy and the PDF of the Laplace, and thel
Normal distributions.
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where = represents the arrival time. In Fig. 4, 5 we plot
the evolution of Ly(¢t) over time for some cases of the 3

distributions. Those plots are obtained for flash crowd0®® Fig. 6. Simulation setup

flows, and consideringy, = 0.1 s. Also, the initial number

of flows in the syst_em, i.e. before the f_Iash crowd, is set t0 gince our main emphasis is on understanding queue dynam-
1. The results obtained can be generalized for a flash cropd nger a sustained increase of flows, we first populate the
with any number of flows, as long as the ratio between th&giem with flows from nodes/; to the sinkS. This allows
number of flows of the flash crowd and the initial numbefe system to both stabilise the flow rate attributed to every
of flows in the network is kept constant. Analyzing(¢) fiow and drain the queue, which naturally builds up as the
for a PDF of an arrival distribution allows us to infer th&;rst flows enter the network. The number of initial nodes
queue response to that PDF. Queue length will follow(f) s the minimum value of flows to which the growth ratecan
dynamics ifLy(t) is below the stability limit (shown in Fig. 3), ;¢ successfully applied, obtained using= round (% — 1).
however if Lo(t) is above the stability limit, then the queueynce the queue has been depleted, the node reLsponsibIe for

length will increase exponentially. We will see this in MOrimulating the flash crowd effect, initiates flows at the
detall in the next section. desired rate.

IIl. SIMULATION RESULTS

The purpose of our simulation results is twofold: we wish 6 Model Validation
both 1) validate the theoretical limits extracted from thedwsl We begin by validating the relationship between the com-
presented in the previous section as well as 2) understand plensation queueg. and Ly present in Eq. 3. We run a set of
limitations such a model has in fully representing an actuekperiments for several values 6f, 5. In these experiments
RCP system. To this end, we present results performed with = 0.4 Fig. 7 plots the values obtained through ns-2
ns-2 using our own implementation of the RCP algorithsimulation overlapped with the theoretical values. Theieal



obtained through simulation are represented by lines wigxperiment forb = 1,0 = 1.5. For b = 1.5, Ly(¢) tends to
points, while the theoretical results are shown in simpiedi  0.068 which is only slightly above the stability limit. For this
The simulation results support that our analysis is valid ameason the exponential growth of the queue in this case is a
accurate. The bottom plot of Fig. 7 represents the queudHengit timid.

dynamics over time for various, and 3 = 0.226, where we

observe that the queue length converges to a vicinity of thg 3e+06
value we have derived in the analysis. The plot above, shov& 2'22182 [
the compensatiqn gqueue reqqired fqr a given pai.ef 3. 8 15e+06 |
The curves obtained through simulation mirror those olehin %  1c+06 | .
. . > J=Raio) g8
through the analysis with only a small error. % 5e+05 %%w@oﬂ%@@w '
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Fig. 8. Above) The queue response to flash crowds following Laplace
distributions withb = 1,b = 1.5,b = 2. Below) The growth rateLq(¢)
of the number of flows throughout time.
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8 al 52006 & Finally, we analyze how RCP adapts to a surge in the
g ' 0-0-0-0-0- L‘OO7+ . A
8 505e+05 || FREE” 9-0-6"0-6-g-0-0, number of flows following Normal and Erlang distributions
3 2340405 A\R Cp OB e a0 e ] (Eg. 14, and _Eq: 15, respectively). We penter the peak of
8 186405 \“\%M&: e the Normal distribution att = 10 s, while the peak of

the Erlang distribution varies betweénand 10 s. We also

vary the parameters of the distributions that regulate the
concentration of flow arrivals. The number of injected flows
was, again, 5000. The results, shown in Fig. 9 (Normal),
Figﬂ? tﬁbovi:{) Tlhe Tompensaltit? 3uett@h%las a fq%ctiﬂn O_féo Ifor various and Fig. 10 (Erlang), indicate that both distributions proel
@'ngtheV;‘t’irn‘:écf%rga:“%?gg gn% Z r;\:ge 'ggz'W%hgtéoﬁ’éeﬁ;);’vﬁ)ogucfu“:ue periods of higher acceleration of the number of flows than
theoretical values are represented by horizontal lines. the Laplace distribution. The value & (¢) required to inject
5000 flows easily surpasses the stable limitlgf < 0.06
for the tested scenarios. The Erlang distribution is thestvor
in this aspect as it may even cause large spiked @f)
right in the beginning of the flash crowd. The periods of high
We analyze how RCP adapts to a surge in the numberaifceleration experienced in these distributions, evemiy o
flows following a Laplace distribution (Eq. 13). We centefor a short time, prove to be much harder to control by RCP,
the peak of the Laplace distribution at instant= 20 s and than the continued acceleration experienced by flash crowds
experiment with various values of the scale parametsrthe following Laplace distributions. Whenevdr,(¢) goes above
Laplace distributionb controls the degree of concentratiorits stable limit, the queue length grows exponentially aays
of flow arrivals aroundt = 20 s, being that forb = 1 system delay to increase accordingly. For the system torezco
arrivals are more concentrated than o+ 2. 5000 flows are from this unstable period(t) must dive well below the
injected in the network for each simulation run and RCP waitially established stability limit, because that limigs valid
configured withg = 0.226,« = 0.4. The resulting figures assuming a much lower base delay. How I&w(t) must go
(Fig. 8) show howlL,(t) evolves over time, and also theafter an unstable period, depends on how much the system
consequent evolution of the queue length. It is observéiale tdelay has grown during the period of instability. This fast i
Laplace distributions tend to produég(¢) function that tends most clearly observable in the results from the experiment
to converge to a constant value. The queue length follows tiwith a Normal distribution of flow arrivals (Fig. 9), whereeth
dynamics of Ly(t) if Lo(t) stays below the stability limit, longer the unstable period is, the lowgs(¢) must go before
which for this case isLy ~ 0.062 (marked in the figure as queue length starts to decrease.
an horizontal line). IfLy(¢t) goes above the stability limit, Another aspect of these experiments that stands out, is
then the queue will grow exponentially, as it happens in thike high value of the queue length (in the order of tens of

11 12 13 14 15 16 17 18
Time (seconds)

B. Laplace Distribution



Mbyte) obtained when the stability limit of, is breached. able to stabilize queue length if the growth rdig(¢) of the

In our experiments we did not limit the size of queue lengtimumber of flows does not exceed a certain limit. The queue
mainly because our objective was to validate the mathealatitength required to stabilize the system is proportionalhe t
model. However, we do not expect real systems to have suBBP of the network and decreases with The maximum

large buffers. If the stability limit is breached, massiacket

growth rate for which RCP is stable is obtained by identifyin

loss is expectable and additional measures are requiredthte maximum of Eq. 3. With the results we have presented,
guarantee decent network performance. Such measures mightdesigner of an RCP system is better prepared to choose
include adopting some sort of admission control mechanisRCP parameters and also to predict the system response in the
or increasing the value of the paramet@rof the RCP presence of a flash crowd. Additionally, we have the studied

controller, whenever(t) crosses to the unstable region.

how the growth rateLy(¢t) behaves for the case of three
typical arrival distributions: Laplace, Normal, and Eman
Flash crowds following a Laplace distribution have shown to
be the easier to control by RCP, while those following an
Erlang distribution where more prone to drive the system to
instability - assuming the flash crowds are composed by the
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Fig. 9. Above) The queue response to flash crowds following Normal

distributions withs = 1,s = 2,s = 4. Below) The growth rateLq(¢)
of the number of flows throughout time.
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Fig. 10. Above) The queue response to flash crowds following Erlang

distributions withk = 2,k = 4,k = 6, and A\ = 1. Below) The growth
rate Lo(t) of the number of flows throughout time.

IV. CONCLUSION

In this paper we have studied the effect that the persistent
and significant increase of the number of flows has in an
RCP system. We have introduced the variation of the number
of flows in the differential equations that characterize the
behaviour of RCP, and by that we were able to determine
properties of the steady state of RCP. We found that RCP is

same number of flows and have similar duration.
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