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Flash Crowd Effect in RCP
Filipe Abrantes, João Taveira Araújo and Manuel Ricardo

Abstract— The Rate Control Protocol (RCP) [1] is an explicit
congestion control mechanism that, amongst other characteris-
tics, reduces the average flow completion time (AFCT) metric
by one order of magnitude when compared to TCP NewReno.
RCP reduces the AFCT by allowing new flows to instantly use
the same rate as existing flows in the network. This results in
link utilization temporarily exceeding available capacity when
flows enter a network, inducing queue build-up. As such, RCP
is particularly vulnerable to flash crowds, whereby a system
witnesses a significant increase in the number of flows over a
short period of time. In this paper we analyze RCP’s response
to varying rates of increase in the number of flows. We conclude
that, for a given arrival growth rate, RCP is able to stabilize
queue length as long as this rate does not exceed well defined
limits. We quantify the queue length required to stabilize the
system response and the limit arrival growth rate using a model
of RCP that incorporates the effect of new flow arrivals. Finally,
we validate our analysis through ns-2 simulations.

Index Terms— RCP, congestion control, flash crowds

I. I NTRODUCTION

In recent years congestion control algorithms which rely
on routers to adjust the rate of connections have become
increasingly researched. Amongst these explicit congestion
control algorithms is the Rate Control Protocol (RCP) [1].
An RCP router calculates a rate that is to be used by all flows
bottlenecked in that router. This rate is updated accordingto
the link utilization and the current queue length of the router.
By specifying a single rate across all flows, the RCP system
exhibits (1) perfect flow bandwidth fairness at all times and
(2) removes the adaptation phase that new flows typically
go through in other congestion control protocols. The result
is that the average flow completion time (AFCT) is greatly
reduced, i.e. by one order of magnitude compared to New
Reno, which is argued by RCP authors as being the right
metric for congestion control [2] since most flows in the
Internet have a short duration. The reduced AFCT comes
at the cost of utilization overshoot whenever the number of
flows in the system increases - and under-utilization when the
inverse happens. This reflects the design philosophy behind
RCP [3], which assumes it works well for most cases, whilst
not performing as successfully under extreme, rare conditions.
In this paper we dig exactly into one of these cases where
RCP might struggle to perform. The objective of the paper
is not to detract RCP, far from it, but rather to present an
analysis and results that help us predict RCP behaviour under
specific, extreme conditions and, based on our findings, aid in
the design of a robust RCP system. We study the significant
and persistent increase in the number of flows in a network,
also known asflash crowds, and its implications on RCP. Flash
crowds appear typically at the beginning of a popular event,
e.g. sports match, live concert streaming,Slashdotarticle,
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Fig. 1. Flow congestion windows. A new flow enters the networkevery 3
seconds. Whenever a flow enters the network there is a period of increased
queuing delay due to capacity overshoot. The spikes in the congestion window
and the slow convergence reflect this increased queuing delay.

where the number of participants, read flows, is likely to
increase significantly over a short period of time.

We introduce the variation of the number of flows in the
equations that characterize RCP’s behaviour, and by doing that
we are able to define system steady-state properties. We find
that there is a maximum growth rate of the number of flows
for which the bottleneck queue will stabilize. We find this
stabilizing queue length and also the maximum growth rate
for which the system is stable. These results are useful to
the design of an RCP system as parameters may be chosen
in order to make RCP more robust in the presence of flash
crowds.

The paper structure is as follows: in this section we motivate
and explain the scope of our study. In Section II we model the
variation of the number of flows and present our analysis, and
in Section III we validate the results from the analysis through
ns-2 simulations. We conclude the paper in Section IV.

II. FLASH CROWD EFFECT IN RCP

The RCP router periodically calculates a common rateR

to be used by all flows. This rate is passed to the sources
using the rate field of a header placed between the network
and transport headers. The RCP router only fills the rate field
if its common rateR is lower than the value contained in the
rate field. As a result, on arrival the rate field will have been
filled by the path bottleneck. The rateR is updated by the
router at every control intervald so a fraction of the unused
bandwidth is distributed amongst flows and a portion of the
standing queue is drained.R is defined as:

R(t) = R(t − d) +

(

α · (C − y(t − d) − β ·
q(t−d)

d
)

N̂(t)

)

(1)
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wherey(t) is the sum of the incoming bandwidth,d is the
delay of the communication between the router and the sources
(an approximate average at least), andC is the link capacity.
α, andβ are system constants tuned to ensure system stability
for any capacity, delay and number of sources.N̂ represents
an estimate of the number of flows traversing the router,
which is calculated by the router aŝN(t) = y(t−d)

R(t−d) . The
accuracy of the estimate of the number of flows is of extreme
relevance, as it directly impacts network utilization. Moreover,
if during an update interval the number of flows entering the
network differs from the number of flows leaving the network,
link utilization will probably also differ from 1. To better
understand this phenomenon let’s think on what happens when
flows enter the network. The new flows will be informed to use
a certain rateR that was calculated taking into account less
flows. As a result, the entrance of the new flow will cause
temporary over-utilization of the network, leading to queue
build-up, until the estimate of the number of flows in the
router becomes more accurate, andR is set accordingly. Fig.
1 refers to an experiment where a new flow enters the network
every 3 seconds. After the arrival of a new flow there is an
increase in the congestion window of all flows, caused by the
increase in queuing delay due to over-utilization, and thena
few RTTs are required until RCP drains the bottleneck queue
and adjusts the common rateR with the correct number of
flows. Furthermore, we can see that the effect of the arrival
of new flows is proportional to the ratio between new and
existing flows.

A. Modeling Flow Arrivals

An RCP system can be studied using a fluid model. Fol-
lowing Eq. 1, and a) assuming a constant number of flows
in the network, b) considering all flows have the same RTT
and c) ignoring queue boundaries, the set of equations below
characterizes an RCP system:

F (t) = α · (C − y(t − d)) − β ·
q(t − d)

d
(2)

ẏ(t) =
F (t)

d
(3)

q̇(t) = y(t) − C (4)

where the system delayd can be expressed by the sum of the
propagation RTTd0 and queuing delay:

d = d0 +
q(t)

C
(5)

To introduce the effect of the variation of the number of flows,
we need to write Eq. 3 as:

ẏ(t) =
1 + L(t)

d
· F (t) +

L(t)

d
· y(t − d) (6)

whereL(t) represents the growth rate of the number of flows:

L(t) =
N(t) − N(t − d)

N(t − d)
(7)
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Fig. 2. The compensation queueqc required to neutralize a growth rateL
of the number of flows for various values ofβ.

Note that we define the growth rate of the number of flows as
being normalized to the system delayd. As such it represents
the ratio between the number of new flows during an interval
of d seconds and the number of active flows in the previous
interval.

B. Finding the Limits of RCP

To understand the limits of RCP, we analyze its behaviour in
the presence of a constant growth rate of the number of flows.
This means that we considerL(t) = L to be constant and
establish steady-state properties and limits as a functionof L.
For example, consideringL = 0.5 results in an increase in the
number of flows by 50% over each interval ofd seconds. As
we will show soon enough,L itself influences the system delay
d and for that reason we will also define stationary properties
of the system as a function ofL0. L0 is a particular case
of L calculated for the network minimum delayd0 which is
constant, allowing us to define flow growth more objectively.

We start the analysis by assuming steady-state conditions
of the system represented by Eq. 6, 2, 4, 5. Steady-state
conditions arey(t) = C, ẏ(t) = 0, L(t) = L. Under these
conditions, we can rewrite Eq. 6 as:

qc =
C · L

β · (1 + L)
· d (8)

which, usingd = d0 + q

C
from Eq.4, results in:

qc =
C · L

(β − 1) · L + β
· d0 (9)

whered0 is the network RTT excluding queuing delay at the
router. This is an interesting result, assuming that the system
is able to achieve steady-state. In the presence of a constant
growth rate in the number of flows in the network, the queue
length of the bottleneck router will grow to a point where it
neutralizes the effect of the arrival of new flows. We call this
queue length thecompensation queueor qc. The compensation
queueqc required to balance flow growth rate is proportional
to the network bandwidth delay productC ·d0, and grows with
the flow growth rateL, while decreasing with an increase of
β. An interesting remark is that the parameterα does not
influence the compensation queue. This is somewhat expected
asα controls the weight given to the spare bandwidth in the
feedback given to the sources. In steady-state the link is fully
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Fig. 3. The compensation queueqc required to neutralize a growth rateL0

of the number of flows for various values ofβ. This refers to the particular
case ofC = 100 Mbit/s andd0 = 0.1 s.

utilized, thus there is no spare bandwidth. Another interesting
conclusion is that the RCP system can only sustain the flash
crowd if (β−1)·L+β > 0. If this condition is not met,qc will
tend to infinity, meaning that utilization will be persistently
above the network capacity and the system will be unstable.
Fig. 2 showsqc as a function ofL, β. The stability limits
are shown in the figure as vertical lines. We have seen that
the RCP system tries to neutralize the growth of the number
of flows by building up the queue, stabilizing queue length
up to a certain growth limit. These results also show a more
subtle connection. We have established a relationship between
the compensation queueqc and the growth rateL. The growth
rateL, however, is defined as the growth rate of the number of
flows eachd seconds, whiled itself depends ofL. This does
not allow us to define a constant growth rate. To overcome
this problem we defineL0, which has the same meaning as
L, but refers to the growth on a fixed interval ofd0 seconds.
Additionally, we can representL as a function ofL0:

1 + L = (1 + L0)
d

d0 (10)

upon simplification:

L = (1 + L0)
1+ q

C·d0 − 1 (11)

d0, as previously stated, is the network RTT excluding queuing
delay. Using this new definition ofL in Eq. 9 we obtain:

qc =
C ·
[

(1 + L0)
1+ qc

C·d0 − 1
]

(β − 1) ·
[

(1 + L0)
1+ qc

C·d0 − 1
]

+ β
· d0 (12)

and now we haveqc defined only in terms of initial conditions,
allowing us to determineqc for a given constant growth rate of
the number of flows. Unfortunately, this equation is not easily
reducible to a closed form so we will just leave it as is, solving
it numerically. The resulting plot is shown in Fig. 3, which
exhibits a similar pattern to that of Fig. 2. One difference is
the marking of stability limits. In Fig. 3 the maximum y vertex
of each curve corresponds to the highest growth rateL0 for
which RCP is able to absorb the flash crowd.

In conclusion our analysis shows that, within certain limits,
RCP is able to stabilize queue length even in the presence of a

constantL or, in other words, if an exponential growth of the
number of flows occurs. We have shown how to calculate the
length at which the queue stabilizes given a growth rateL0,
a network minimum RTT ofd0, a link capacityC, and theβ
parameter of RCP. Likewise, we have shown how to calculate
the maximum growth rateL0 which RCP is able to sustain
whilst remaining stable.

C. Model and Analysis Limitations

The model we used to study RCP response to the variation
of the number of flows has two major simplifications. It
considers that all flows have the same RTT and does not
consider queue boundaries. We don’t expect significant impact
from these simplifications, apart from the obvious - i.e. if
the queue buffer is smaller than the compensation queueqc

required, the RCP system will not be able to neutralize the
flash crowd, resulting in an ever increasing packet drop rate.
A deeper study on the implications such simplifications have
should be the subject of future work.

The main limitation of our analysis of the RCP model is
that we assumed convergence to the steady-state. This may
not happen however, as the RCP system is only stable for
certain pairs of values ofα, β. Therefore, the results of our
analysis are only valid for pairs ofα, β that enable system
stability. A previous study [4] has defined the area ofα, β for
which RCP is stable.

D. Response to Typical Arrival Distributions

We have derived steady-state properties and conditions as a
function of a constant growth rate of the number of flowsL0.
As such we can calculate the compensation queueqc if the
number of flows in the network grows by a factor of(1+L0)
in each interval ofd0 seconds - an exponential increase. It is
equally interesting to understand how an RCP system responds
to other types of growth of the number of flows, namely in
the presence of typical flow arrival distributions. To this end,
we need to find howL0(t) behaves for these distributions. We
analyzeL0(t) for 3 types of flow arrival distributions: Laplace,
Normal, and Erlang. The Laplace and the Normal distributions
refer to the case of scheduled events, e.g. sports match, where
arrivals may start before the event. The Erlang distribution
refers to the case of unplanned events, e.g.Slashdotarticle,
where there is a strong ramp-up reaction shortly after the event
occurs, which then fades away in time. The probability density
function (PDF) of the Laplace distribution is defined as:

f(x) =
1

2b
· e−

|x−µ|
b (13)

the PDF of the Normal distribution is defined as:

f(x) =
1

σ ·
√

2 · π
· e−

(x−µ)2

2·σ2 (14)

the PDF of the Erlang distribution is defined as:

f(x) =
λk · xk−1 · e−λ·x

(k − 1)!
(15)
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Fig. 4. The relationship betweenL0 and the PDF of the Laplace, and the
Normal distributions.

where x represents the arrival time. In Fig. 4, 5 we plot
the evolution ofL0(t) over time for some cases of the 3
distributions. Those plots are obtained for flash crowds of 5000
flows, and consideringd0 = 0.1 s. Also, the initial number
of flows in the system, i.e. before the flash crowd, is set to
1. The results obtained can be generalized for a flash crowd
with any number of flows, as long as the ratio between the
number of flows of the flash crowd and the initial number
of flows in the network is kept constant. AnalyzingL0(t)
for a PDF of an arrival distribution allows us to infer the
queue response to that PDF. Queue length will followL0(t)
dynamics ifL0(t) is below the stability limit (shown in Fig. 3),
however if L0(t) is above the stability limit, then the queue
length will increase exponentially. We will see this in more
detail in the next section.

III. S IMULATION RESULTS

The purpose of our simulation results is twofold: we wish to
both 1) validate the theoretical limits extracted from the model
presented in the previous section as well as 2) understand the
limitations such a model has in fully representing an actual
RCP system. To this end, we present results performed with
ns-2 using our own implementation of the RCP algorithm
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Fig. 5. The relationship betweenL0 and the PDF of the Erlang distribution.

based on the existing XCP source code included in the ns-2
package. The setup, shown in 6, is composed of wired nodes
connected to a sinkS via a router,R. To ensure the same
bottleneck is shared across all flows, nodes connected toR

have twice the bandwidth available betweenR andS, which
was set at 100Mbit/s. The propagation delay,d, was set to
25ms unless otherwise stated, resulting in a total round trip
time of 100ms for each flow.

S R  M(2) 

 M(n) 

F 

 200Mbit/s

 d ms

 100Mbit/s

 d ms

 200Mbit/s

 d ms

 M(1) 

 M(0) 

Fig. 6. Simulation setup

Since our main emphasis is on understanding queue dynam-
ics under a sustained increase of flows, we first populate the
system with flows from nodesMi to the sinkS. This allows
the system to both stabilise the flow rate attributed to every
flow and drain the queue, which naturally builds up as the
first flows enter the network. The number of initial nodesm

is the minimum value of flows to which the growth rateL can
be successfully applied, obtained usingm = round

(

1
L
− 1
)

.
Once the queue has been depleted, the node responsible for
simulating the flash crowd effect,F , initiates flows at the
desired rate.

A. Model Validation

We begin by validating the relationship between the com-
pensation queueqc andL0 present in Eq. 3. We run a set of
experiments for several values ofL0, β. In these experiments
α = 0.4 Fig. 7 plots the values obtained through ns-2
simulation overlapped with the theoretical values. The values
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obtained through simulation are represented by lines with
points, while the theoretical results are shown in simple lines.
The simulation results support that our analysis is valid and
accurate. The bottom plot of Fig. 7 represents the queue length
dynamics over time for variousL0 andβ = 0.226, where we
observe that the queue length converges to a vicinity of the
value we have derived in the analysis. The plot above, shows
the compensation queue required for a given pair ofL0, β.
The curves obtained through simulation mirror those obtained
through the analysis with only a small error.
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Fig. 7. Above) The compensation queueqc as a function ofL0 for various
β. The theoretical values are plotted with lines without points. Below) Queue
length vs. time forβ = 0.226 and a range ofL0. The compensation queue
theoretical values are represented by horizontal lines.

B. Laplace Distribution

We analyze how RCP adapts to a surge in the number of
flows following a Laplace distribution (Eq. 13). We center
the peak of the Laplace distribution at instantt = 20 s and
experiment with various values of the scale parameterb of the
Laplace distribution.b controls the degree of concentration
of flow arrivals aroundt = 20 s, being that forb = 1
arrivals are more concentrated than forb = 2. 5000 flows are
injected in the network for each simulation run and RCP was
configured withβ = 0.226, α = 0.4. The resulting figures
(Fig. 8) show howL0(t) evolves over time, and also the
consequent evolution of the queue length. It is observable that
Laplace distributions tend to produceL0(t) function that tends
to converge to a constant value. The queue length follows the
dynamics ofL0(t) if L0(t) stays below the stability limit,
which for this case isL0 ≈ 0.062 (marked in the figure as
an horizontal line). IfL0(t) goes above the stability limit,
then the queue will grow exponentially, as it happens in this

experiment forb = 1, b = 1.5. For b = 1.5, L0(t) tends to
0.068 which is only slightly above the stability limit. For this
reason the exponential growth of the queue in this case is a
bit timid.
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Fig. 8. Above) The queue response to flash crowds following Laplace
distributions withb = 1, b = 1.5, b = 2. Below) The growth rateL0(t)
of the number of flows throughout time.

C. Normal & Erlang Distributions

Finally, we analyze how RCP adapts to a surge in the
number of flows following Normal and Erlang distributions
(Eq. 14, and Eq. 15, respectively). We center the peak of
the Normal distribution att = 10 s, while the peak of
the Erlang distribution varies between5 and 10 s. We also
vary the parameters of the distributions that regulate the
concentration of flow arrivals. The number of injected flows
was, again, 5000. The results, shown in Fig. 9 (Normal),
and Fig. 10 (Erlang), indicate that both distributions produce
periods of higher acceleration of the number of flows than
the Laplace distribution. The value ofL0(t) required to inject
5000 flows easily surpasses the stable limit ofL0 < 0.06
for the tested scenarios. The Erlang distribution is the worst
in this aspect as it may even cause large spikes ofL0(t)
right in the beginning of the flash crowd. The periods of high
acceleration experienced in these distributions, even if only
for a short time, prove to be much harder to control by RCP,
than the continued acceleration experienced by flash crowds
following Laplace distributions. WheneverL0(t) goes above
its stable limit, the queue length grows exponentially causing
system delay to increase accordingly. For the system to recover
from this unstable period,L0(t) must dive well below the
initially established stability limit, because that limitwas valid
assuming a much lower base delay. How lowL0(t) must go
after an unstable period, depends on how much the system
delay has grown during the period of instability. This fact is
most clearly observable in the results from the experiment
with a Normal distribution of flow arrivals (Fig. 9), where the
longer the unstable period is, the lowerL0(t) must go before
queue length starts to decrease.

Another aspect of these experiments that stands out, is
the high value of the queue length (in the order of tens of
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Mbyte) obtained when the stability limit ofL0 is breached.
In our experiments we did not limit the size of queue length,
mainly because our objective was to validate the mathematical
model. However, we do not expect real systems to have such
large buffers. If the stability limit is breached, massive packet
loss is expectable and additional measures are required to
guarantee decent network performance. Such measures might
include adopting some sort of admission control mechanism,
or increasing the value of the parameterβ of the RCP
controller, wheneverL0(t) crosses to the unstable region.

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 5 10 15 20

Q
ue

ue
 S

iz
e 

(b
yt

es
)

Time (seconds)

s=1.0

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 5 10 15 20

Q
ue

ue
 S

iz
e 

(b
yt

es
)

Time (seconds)

s=1.0
s=2.0

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 5 10 15 20

Q
ue

ue
 S

iz
e 

(b
yt

es
)

Time (seconds)

s=1.0
s=2.0
s=4.0

0

0.05

0.1

0.15

0.2

0 5 10 15 20

L 0

Time (seconds)

s=1.0

0

0.05

0.1

0.15

0.2

0 5 10 15 20

L 0

Time (seconds)

s=1.0
s=2.0

0

0.05

0.1

0.15

0.2

0 5 10 15 20

L 0

Time (seconds)

s=1.0
s=2.0
s=4.0

0

0.05

0.1

0.15

0.2

0 5 10 15 20

L 0

Time (seconds)

0

0.05

0.1

0.15

0.2

0 5 10 15 20

L 0

Time (seconds)

Fig. 9. Above) The queue response to flash crowds following Normal
distributions with s = 1, s = 2, s = 4. Below) The growth rateL0(t)
of the number of flows throughout time.
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Fig. 10. Above) The queue response to flash crowds following Erlang
distributions withk = 2, k = 4, k = 6, and λ = 1. Below) The growth
rateL0(t) of the number of flows throughout time.

IV. CONCLUSION

In this paper we have studied the effect that the persistent
and significant increase of the number of flows has in an
RCP system. We have introduced the variation of the number
of flows in the differential equations that characterize the
behaviour of RCP, and by that we were able to determine
properties of the steady state of RCP. We found that RCP is

able to stabilize queue length if the growth rateL0(t) of the
number of flows does not exceed a certain limit. The queue
length required to stabilize the system is proportional to the
BDP of the network and decreases withβ. The maximum
growth rate for which RCP is stable is obtained by identifying
the maximum of Eq. 3. With the results we have presented,
the designer of an RCP system is better prepared to choose
RCP parameters and also to predict the system response in the
presence of a flash crowd. Additionally, we have the studied
how the growth rateL0(t) behaves for the case of three
typical arrival distributions: Laplace, Normal, and Erlang.
Flash crowds following a Laplace distribution have shown to
be the easier to control by RCP, while those following an
Erlang distribution where more prone to drive the system to
instability - assuming the flash crowds are composed by the
same number of flows and have similar duration.
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