
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Explicit Congestion Control Algorithms for Variable

Capacity Media
Filipe Abrantes, Jõao Aráujo, and Manuel Ricardo,Member, IEEE

Abstract—Explicit congestion control (XCC) is emerging as

one potential solution for overcoming limitations inherent to the

current TCP algorithm, characterized by unstable throughput,

high queuing delay, RTT-limited fairness and a static dynamic

range that does not scale well to high bandwidth delay prod-

uct networks. In XCC routers provide multi-bit feedback to

sources, which in turn adapt throughput more accurately to the

path bandwidth with potentially faster convergence times. Such

systems however require precise knowledge of link capacity for

efficient operation. In the presence of variable capacity media,

e.g 802.11, such information is not entirely obvious or may be

difficult to extract. We explore three possible algorithms for

XCC which retain efficiency under such conditions by inferring

available bandwidth from queue dynamics and test them through

simulations with two relevant XCC protocols: XCP and RCP.

Additionally, preliminary results from an experimental imple-

mentation based on XCP are presented. Finally, we compare our

proposals with TCP and show how such algorithms outperform

it in terms of efficiency, stability, queuing delay and flow-rate

fairness.

Index Terms—XCP, RCP, Congestion Control

I. I NTRODUCTION

T CP [14] has been responsible for congestion control

ever since Van Jacobson’s algorithm [8] was embedded

into the transport protocol in the late 80’s. Despite performing

its task remarkably well, it degrades network performance due

to increased queueing delay, unstable throughput and limited

fairness. Additionally, ever-higher bandwidth coupled with

longer delays result in increasingly poor link utilization, slow

adaptation to changing link loadings and significant congestion

losses.

The root of the problem stems from TCP’s reliance on rare

events which carry a low resolution of information. As a result,

TCP is left to infer too much from too little, being unable to

achieve the target share of bandwidth in a timely and accurate

fashion. XCC protocols propose a new approach, whereby

routers take an active role in informing sources about the state

of the network, helping sources to adjust their sending rateby

using precise multi-bit feedback. This allows fast and accurate

adaptation to network conditions, enabling stable throughput,

high utilization, and low standing queues in the network.

In order to calculate the feedback given to sources however,

a router needs to compute the current spare bandwidth of the

outgoing link, which in turn requires knowing the exact link

capacity. In variable capacity media, knowing this value and

the fair share of each station is difficult as it depends on a

number of factors (e.g. MAC efficiency, data and basic rates

used by each station). This unpredictability of the medium

capacity causes classic XCC feedback algorithms to perform

poorly, inhibiting the use of XCC over variable capacity media.

In this paper we explore the design space for XCC algo-

rithms when the link capacity is unknown or variable, by

exploring three alternative algorithms designed to be used

under such conditions. The first algorithm measures spare

bandwidth from queue speed; the second algorithm tries to

infer available bandwidth from the idle/busy times at the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

MAC level; the third and final alternative algorithm allows

the configuration of a fixed capacity at the router and in turn

tries to estimate the difference between the configured capacity

and the real medium capacity by monitoring queue build. We

apply these three algorithms in simulation to both XCP [11]

and RCP [6], two of the most significant XCC protocols.

The paper is organized as follows. Section II refers related

work, Section III provides background on XCC operation

and feedback algorithms and details the effect that a capacity

estimation error has on system performance. In Section IV we

present in detail the three alternative algorithms for feedback

calculation in variable capacity media. In Section V we present

a performance analysis of the algorithms and draw conclusions

in Section VI.

II. RELATED WORK

The work presented here builds on the approaches taken by

XCP-b [4] and WXCP[15]. In these papers two algorithms

were proposed to extend the most proeminent XCC protocol

at the time, XCP, for wireless variable capacity media. In our

work we solve open issues of XCP-b, such as the dynamic

configuration of its parameters, and also present modifications

to WXCP that make it more practical. We also extend their

applicability to RCP, another XCC protocol.

Our work also takes advantage of previous studies and

tests [17], [18], [10] which have analysed the impact of a

capacity estimation error in the overall performance of XCC

algorithms. In the past years further theoretical studies [16],

[5], [12] helped to gain a better understanding of the operation

of XCC protocols, however they are not directly related with

the operation of XCC protocols over variable capacity media.

III. E XPLICIT CONGESTIONCONTROL

(XCC) BACKGROUND

XCC protocols enable queue controllers in a path to inform

sources about the state of the network and how they should

adapt their sending rate. This communication between sources

and the network is enabled by using a header between the

network and transport layers. This congestion header typically

carries information about the flow to which the packet belongs,

such as the throughput or the RTT. The RTT enables the

XCC controller to adjust the pace of adaptation to network

conditions, while the throughput may be used to decide

bandwidth distribution among flows (some protocols do not

assign bandwidth directly to individual flows). Based on the

values of the congestion header and other local variables the

XCC router will calculate a feedback value and insert it into

the congestion header. The packet will reach the receiver,

which will send an ackowledgement to the sender carrying

the feedback inserted by the bottleneck router in the forward

path.

A. Aggregate Feedback Calculation at the

XCC router

The core of a XCC algorithm is the aggregate feedback

calculation performed at the router, that is the amount of

bandwidthF that is to be distributed among the flows during

a certain control intervald. This calculation is typically a

function of the available bandwidth and the standing queue

in the router. In this work we focus on the particular case of

XCP and RCP, two of the most relevant XCC protocols. We

will discuss later how to apply our ideas to any XCC protocol.

For the particular case of XCP and RCP, the calculation ofF

takes the form:

F = α · (C − y) − β · q

d
(1)

whereC is the capacity of the transmission medium,y(t) is

the bandwidth actually used during the last periodd andq is

the persistent queue or, in other words, the minimum queue

length observed during the lastd seconds.d is usually set to

be the average RTT of the flows traversing this queue.α and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

β are constants. The bandwidth allocation algorithm will then

distributeF among the currently active flows, however, this is

protocol specific as we explain in Section III-C. It is important

to note that an XCC router controls each of its output queues

individually, meaning thatF is calculated for each of those

queues.

B. Capacity estimation error

Choosing a capacity valueC for the computation ofF

(Eq. 1) when the underlying medium allows concurrent access

from different stations that can use different rates, e.g. IEEE

802.11, is not trivial. The overall medium capacity,C, depends

on the data rate used by each station, the number of active

stations, the number of collisions, failed transmissions and

the handshake mechanisms (RTS/CTS) and their thresholds.

Previous studies [17], [4] have shown that XCP is able to

compensate an erroneous capacity estimation, up to a certain

limit, by building up the queue. The same applies to RCP

as they use the same aggregate feedback function. The queue

length required to compensate the error is proportional to the

error ǫ itself, to the average RTT of the flowsd and the ratio

α
β

. The errorǫ can be defined as:

ǫ = C − Creal (2)

whereC is the capacity estimate andCreal represents the ac-

tual medium capacity. The amount of queue build-up required

to compensate this estimation error is given by:

q =
α

β
· ǫ · d (3)

for a more convenient analysis we decomposed to reflect the

effect that queue build-up has on the overall system delay:

d = d0 +
q

Creal

(4)

0.2d0

0.5d0

d0

 0.05 0.1 0.2 0.3 0.4 0.5 β/α

Q
ue

ue
/C

ap
ac

ity
 (

se
co

nd
s)

Estimation Error (% of the Capacity)

Fig. 1.

whered0 represents the system base delay, that is the system

delay excluding queuing delay. By applying this relation to

Eq. 3 we finally obtain the compensation queue as a function

of the system base delayd0 and the estimation errorǫ.

q =
α

β
· ǫ · 1

1 − α
β
· ǫ

Creal

· d0, ǫ <
β

α
· Creal (5)

as mentioned above, the system can only compensate esti-

mation errors up to a certain limitǫ < β
α
· Creal, which, if

exceeded, causes the queue to grow indefinetly. These results

only have meaning for positive capacity estimation errors.If

the medium capacity is under-estimated, then the medium will

result under-utilized and of course queue build-up will not

occur.

In real scenarios, e.g. an IEEE 802.11 network, the estima-

tion errorǫ may reach the order of magnitude of the medium

actual bandwidth or even higher, which will cause large

queuing delays or even restrain the queue from stabilizing at

all, when ǫ > β
α
· C. This is observable in Fig. 1, where the

queuing delay introduced by the compensation queue is plotted

as a function of estimation error, expressed as a percentageof

the medium actual capacity.

C. XCP vs. RCP

XCP and RCP are two of the most representative XCC

protocols. They share the same aggregate feedback function

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

(Eq. 1), but differ on how the aggregate of distributable

bandwidth,F , is split among flows in each control interval.

XCP follows an AIMD rule; if F is negative, each flow is

decremented proportionally to its rate, otherwiseF is split

equally among all flows. The detailed algorithm is describedin

[7]. RCP on the other hand tries to emulate processor-sharing

of bandwidth, meaning thatF is split evenly among flows

whetherF is positive or negative and that all flows use the

same common rateR. Additionally, RCP allows new flows to

immediately start using the rate that other flows in the network

are already using. As a result, RCP has a much simpler job

as it only needs to calculate a common rateR - used by all

flows - thus not requiring any per-packet calculations. An RCP

router calculates the common rateRn at intervaln using:

Rn = Rn−1 ·
(

1 +

(

F

N

))

(6)

whereF refers to the aggregate feedback calculation presented

previously (Eq. 1). Processor sharing also has the advantage

of providing instantaneous fairness as new flows converge to

the target rate in 1 RTT, as well as allowing short flows to

complete significantly faster [6]. XCP flows have a smoother

adaptation taking tens of intervals to achieve the target rate.

RCP gains come at the cost of higher and more frequent queue

spikes which can be reflected in higher jitter, or packet loss.

Additionally RCP may struggle to perform in the presence of

concentrated flow arrivals, i.e. flash-crowds, as seen in [3].

As a final note we would like to stress the fact that none of

these protocols requires per-flow state as all flow information

required to allocate bandwidth is carried in the congestion

header.

IV. A LTERNATIVE ALGORITHMS FOR

TIME-VARYING CAPACITY MEDIA

In this section we present alternative router functions to

calculate the aggregate feedback bandwidthF , which allow

XCC algorithms to exhibit a behaviour in variable-capacity

media similar to that obtained in fixed-capacity networks.

The functions proposed remove the need for the router to

be configured with the exact medium capacity and they are

able to adapt to changing bandwidth conditions over time. The

ideas behind the alternatives presented consist of using queue

speed as an indicator of available bandwidth (Blind), queue

accumulation as an indicator of the capacity estimation error

(ErrorS), or relying on direct access to MAC layer information

(MAC).

A. The Blind Algorithm

The Blind algorithm has been proposed in [4] as an alter-

native algorithm for operating XCP in time-varying capacity

media. In this paper we refine Blind’s design to produce a

smoother queue response and extend its applicability to RCP.

Our refinements include a method for dynamically adjusting

theκ parameter, thus allowing automatic system configuration.

The key concept of the Blind algorithm is that spare

bandwidth can be measured from queue speed. In fact, the

rate at which the queue is drained, or at which it builds-

up, is a fairly accurate estimate of the difference between the

incoming bandwidth and the medium capacity within a certain

measurement interval. Thus we can replace this difference by

the measurement of queue speed. The problem in doing so is

that queue speed can only be measured whenever the queue

is not empty, when the medium is saturated. To overcome

this limitation Blind proposes stabilizing queue length atsome

positive value,κ so queue variations can be measured around

this queue length. The calculation of the aggregate bandwidth

feedback,F , becomes:

F = −α · ∆q

d
− β · q − κ

d
(7)

where∆q is the variation of the persistent queue within a

control interval and∆q
d

represents the queue speed within a

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

control interval.κ is the target queue length, around which

queue variations should be measured. Note that the equation

we present slightly differs from that of the original Blind

proposal [4]. In the original Blind proposal, the controller

would switch between the feedback function we present and a

fixed feedback value, given the exponential weighted average

of the queue would cross a certain threshold. This function

allowed the controller to maximize bandwidth distribution

during under-utilization periods, while maintaining low queues

when the medium reached the saturation point. This technique,

however, did not provide an automatic method for adjusting

the value ofκ as it was considered to be constant, which

resulted in non-optimal performance. We propose that this

switching function be embedded in the adjustment of the

κ parameter and thatκ is dynamically adjusted over time.

Making κ dynamic allows the queue to have a smoother

behaviour while guaranteeing thatκ is set according to the

instantaneous operating conditions. The detailed instructions

and the rationale behind the adjustment ofκ are presented

later in Section IV-D.

B. Error Supression Algorithm (ErrorS)

The idea behind the Error Suppression Algorithm (ErrorS) is

to take advantage of queue accumulation to suppress the error

present in the capacity estimate. As seen in Section III-B,

an errorǫ in the capacity estimate leads to queue build-up,

whereas the amount of queue length required to compensate

the error, in steady-state, is given by:

q =
α

β
· d · ǫ (8)

so, given the current queue length the router is able to inferthe

value of the error present in its capacity estimate. With this

knowledge the router can suppress the error of its capacity

estimate. Referring to the error estimate asξ we can write the

calculation of the aggregate bandwidth feedbackF as:

F = α · (C − y) − µ · ξ − β · q − κ

d
(9)

whereµ is a constant gain parameter dimensioned to preserve

system stability for any delay, capacity, and number of flows.

In Appendix A, we present a stability analysis to assist in

the choice ofµ. As previously mentioned,ξ is the current

estimation of the error and it is calculated over time using:

ξn =
β

α
· q − κ

d
+ ξn−1 (10)

where ξn−1 is our error estimation in the previous control

interval andξn is the error estimation in the current control

interval. The ErrorS algorithm also adopts the strategy used

in Blind of stabilizing queue length at some positive value,

which is controlled byκ. This allows the controller to identify

negative capacity estimation errors when the queue falls below

the thresholdκ. In Section IV-D we present the details on how

to dynamically adjustκ.

A potential problem of the ErrorS algorithm is that the

capacity estimation error may be too large. If that is the

case the initial queue lengths required to stabilize the error

estimation may be huge. Imagine the real case of 802.11g

where a maximum throughput of≈ 16Mbit/s and a minimum

of ≈ 1Mbit/sis available. The maximum is sixteen-fold the

minimum, meaning that it can originate sixteen RTTs worth

of queue space. We recommend setting the capacity estimate

conservatively to avoid large queue build-up and packet loss.

One reasonable approach is to setC = 0.

C. MAC-based algorithm

In [15] another approach to the operation of XCC protocols

in time-varying capacity media is presented. This approach

relies on information accessible at the MAC layer such as the

idle and busy transmission times, as well as the number of

active neighbour stations and the number of collisions. The

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

algorithm that we present here is inspired by this idea, but

we simplify it a bit so that an XCC router is not required to

keep track of the number of active neighbour stations. Using

the busy MAC period within an interval and the number of

bytes sent and received by the router within that interval, it is

possible to calculate the medium bandwidth. Multiplying this

bandwidth by the percentage of idle time of the medium, the

router is finally able to determine how much spare bandwidth it

may grab. The aggregate bandwidth feedback function results

as:

F = α · u

Tbusy

· Tidle

d
− β · q

d
(11)

whereu is the number of bytes sent and received by the router

within a control interval,Tbusy is the period during which the

medium was sensed to be busy, andTidle is the period during

which the medium was sensed as being idle. This formula

is only usable if the station was actually active, otherwise

u = 0 and the router is not able grab any medium bandwidth.

If this is the case, we setF = Qmax

d
which represents the

amount of bandwidth that the queue buffer can absorb in one

control interval.Qmax represents the size of the queue buffer.

If u = 0, it also means that the router does not have an estimate

of d, thus some reasonable value must be used (we recommend

usingd = 300 ms).

The MAC algorithm allows more accurate operation, as the

router knows with some degree of certainty how far it is from

its objective (Tidle = 0), something that does not happen when

using algorithms based solely on queue dynamics. Queue-

based algorithms are not able to determine how far they are

from full utilization as that is not reflected on queue build-

up. For that reason, queue-based algorithms have to be more

conservative when distributing bandwidth when the medium

is under-utilized, so that queue overflow when reaching full

utilization is avoided or at least kept at a reasonable level. The

drawback of a MAC-based approach is that it requires access

to layer 2 information, which makes implementation more

complex and specific to the underlying layer 2 technology.

Additionally, a MAC-based approach may slow the ramp-up of

flows from new stations when the medium is already saturated,

as those new stations perceive the medium as fully-utilized.

D. Theκ Parameter

Theκ parameter represents the target queue length at which

the system stabilizes and plays an important role in both

the Blind and the ErrorS algorithms. During times of under-

utilization - when there is no queue build-up - it will control

how much bandwidth is distributed in each control interval,

while during times of full or over utilizationκ determines how

much queuing delay is introduced in the path. It is desirable

to maximize bandwidth distribution during under-utilization

periods and minimize the queuing delay introduced when the

medium is saturated, therefore we wantκ to be as high as

possible during under-utilization, and as low as possible when

we have reached full utilization. Additionally, we need to

identify these two states - under-utilization and full-utilization

- in a robust manner to avoid unnecesary oscillation inκ,

and consequently in the queue length.κ should also adapt

dynamically to current network conditions, thus not requiring

the dimensioning of any network specific parameters. Let us

now analyze the three objectives ofκ individually:

1) Minimize queuing delay during full-utilization:In order

to minimize queuing delay,κ needs to be set as low as

possible. However,κ still has to be high enough that it can

absorb typical bandwidth fluctuations without draining the

queue completely. The question here is how much bandwidth

varies over adjacent control intervals. The answer to this

question depends on many factors, for example, in a IEEE

802.11 media the variability of the medium total bandwidth

will depend on how many stations are using it concurrently, the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

data rates used by those stations and the current transmission

interference signals. It is simply impractical to choose a

constant value ofκ for all scenarios. One possible approach is

to choose aκ that covers queue variability. To do so, we setκ

to match the queue standard deviation. There are however two

issues in doing so: 1) over which time scale do we calculate

the queue standard deviation, and 2) how can we compute

it efficiently. The time-scale issue is important because ifκ

moves too fast, then the system is not able to stabilize queue

length - we recall thatκ represents the length at which the

controller tries to stabilize the queue. Theκ signal must move

slower than queue length signal. Regarding efficiency, we note

that κ is recalculated in each control interval, thus it cannot

involve very complex mathematical operations. Having these

two aspects in mind, we propose to calculateκ using:

κn = ρ · |q − q̄| + (1 − ρ) · κn−1 (12)

whereκn represents the value ofκ at control intervaln, and

κn−1 represent the valu ofκ in the previous control interval.q

represents the persistent queue length at control intervaln and

q̄ represent the exponential moving average of queue length,

calculated using:

q̄n = ρ · q + (1 − ρ) · q̄n−1 (13)

where ρ has the same meaning as in Eq. 12 and controls

the speed of the exponential moving average by defining the

weight that is given to the current sample of the moving

average. Calculating the queue standard deviation using an

exponential moving average consists in a computationally

efficient method as only 4 multiplications and 2 sums are

required per control interval. The next step of the design

process of the calculation ofκ is dimensioning the constantρ

so thatκ moves slowly enough that the queue length is able to

follow it. A practical approach is to set the cut-off frequency

of the exponential moving average (the exponential moving

average acts as a low-pass pass filter forκ) to be m times

lower than the cut-off frequency of the queue length signal.

From [11] we know that the cut-off frequencywBlind of the

queue length signal of the Blind algorithm is given by:

wBlind =
β

α · d (14)

and in Appendix A we show that the cut-off frequency of the

queue signal of ErrorS is given by:

wErrorS = 1.75 · β

α · d (15)

and we know that the cut-off frequencywκ of an exponential

moving average that assigns a weightρ to the current sample

is given by:

wκ =
ρ

d − ρ · d (16)

We performed extensive sets of simulations and concluded that

it would be enough to set the exponential moving average

cut-off frequency to be 2 times lower than the queue length

cut-off frequency for the case of the Blind algorithm (wκ =

wBlind

2
) and 3 times lower for the case of the ErrorS algorithm

(wκ = wErrorS

3
). Applying the recommended values ofα, β of

the Blind and the ErrorS algorithms (Appendix B) we finally

obtain the value ofρ for both Blind and ErrorS -ρBlind ≤ 0.22

andρErrorS ≤ 0.15.

2) Maximize bandwidth distribution during under-

utilization: In order to maximize bandwidth distribution,κ

needs to be set as high as possible. During under-utilization

we observe no queue build-up, thusq = 0,∆q = 0 (remember

that we refer to the persistent queue, which represents the

minimum queue length observed in a control interval). As

a result, during under-utilization, the aggregate bandwidth

feedbackF is given by:

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

-2βQχ/d

-βQχ/d

 0

βQχ/d

2βQχ/d

Qχ 1.85Qχ2Qχ

E
xc

es
s

U
til

iz
at

io
n

(B
yt

es
)

Queue Size (Bytes)

Fig. 2. System trajectory for the worst case scenario when using the Blind
algorithm.

-2(µ/α+1)βQχ/d

-(µ/α+1)βQχ/d

 0

(µ/α+1)βQχ/d

2(µ/α+1)βQχ/d

Qχ 2Qχ 2.25Qχ

E
xc

es
s

U
til

iz
at

io
n

(B
yt

es
)

Queue Size (Bytes)

Fig. 3. System trajectory for the worst case scenario when using the ErrorS
algorithm.

F = β · κ

d
(17)

when using the Blind algorithm, and:

F = µ · β

α
· κ

d
+ β · κ

d
=

(µ

α
+ 1

)

· β · κ

d
(18)

when using the ErrorS algorithm. By increasingκ we are

indeed increasing the amount of bandwidth distributed within

each control interval however we are also increasing the queue

spike observed when the system crosses to over utilization.But

the question is, how high canκ be so that this spike remains

acceptable. We define anacceptable spikeas a queue spike

that does not cause the persistent queue length to exceed a

certain limit Qmax, which can be for instance the size of the

queue buffer. We refer to the maximum value ofκ as Qχ.

To help us dimension the parameterQχ we draw in Fig. 2, 3

the system trajectory for the worst case scenario. These plots

were obtained using a step-by-step simulation of the Blind and

ErrorS algorithms in MATLAB/Simulink [2], and provide us

the queue peak obtained when usingκ = Qχ. We can now

apply the maximum peak restriction (q ≤ Qmax) which leads

ultimately to the dimensioning ofQχ. For the Blind algorithm

we obtain:

1.85 · Qχ ≤ Qmax → Qχ ≤ 0.54 · Qmax (19)

while for the ErrorS algorithm we can write:

2.25 · Qχ ≤ Qmax → Qχ ≤ 0.44 · Qmax (20)

The formula used for the calculation ofκ becomes:

κn =

ρ · |q − q̄| + (1 − ρ) · κn−1 if full utilization,

ρ · |Qχ − q̄| + (1 − ρ) · κn−1 if under utilization,

(21)

.

3) Identify under-utilization and full-utilization robustly:

We have seen how to adjustκ during periods of under and

full utilization; we shall now discuss how to identify each

of these periods robustly. The most naive approach would

be to consider the medium under-utilized if the persistent

queue is zero, while considering that full-utilization hasbeen

reached once the persistent queue starts to build. Although

feasible, this approach is not robust as the queue may drain

completely in one control interval due to utilization fluctuation

during the transient response or other reasons, e.g. temporary

interference. For this reason we propose to analyze utilization

over a larger time-scale, that is over a certain number of control

intervals. The design challenge is to choose the exact number

of intervals on which to base the analysis so we can identify

under and full utilization accurately. Our proposal is to analyze

utilization over a a number of control intervalsη that covers at

least half the oscillation period of the fundamental frequency

of oscillation, i.e. the cut-off frequency of the queue response.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

As stated before, we know from [11] that the cut-off frequency

of the Blind algorithm is given by Eq. 14, and in Appendix

A we show that the cut-off frequency of the ErrorS algorithm

is given by Eq. 15. This means that half the oscillation period

(TBlind/2) of the Blind algorithm is given by:

TBlind

2
= π · α

β
· d (22)

and half the oscillation period (TErrorS/2)of the ErrorS algo-

rithm is given by:

TErrorS

2
= 0.571 · π · α

β
· d (23)

Now we can use these periods as a reference for medium

utilization analysis being that we consider the medium to be

under-utilized if the persistent queue has been empty for at

least T
2·d control intervals and fully-utilized otherwise. The

final calculation ofκ comes as:

κn =

ρ · |q − q̄| + (1 − ρ) · κn−1 if Lempty < T
2·d ,

ρ · |Qχ − q̄| + (1 − ρ) · κn−1 if Lempty ≥ T
2·d ,

(24)

whereLempty represents a counter of the number of consec-

utive control intervals during which the persistent queue has

been zero. As such, the controller will wait for at leastT
2·d

control intervals before entering the under-utilization state; we

refer to this method aslate reaction. In Fig. 4, 5 we plot

the evolution of the persistent queue length, its exponential

moving average andκ throughout time, for the Blind and

ErrorS algorithms respectively.

V. PERFORMANCE

We validate and evaluate the performance of all three of

our proposed algorithms - Blind, MAC-based and ErrorS - by

applying them to both XCP and RCP. Our goal is to clearly

illustrate the dynamics of each algorithm and their respective

Qχ/2

Qχ

10 20 30 40 50 60 70 80 90

Q
ue

ue
 S

iz
e

(b
yt

es
)

Time (RTTs)

queue length
queue moving average

κ(t)

Fig. 4. The evolution throughout time of the persistent queuelength, its
exponential moving average andκ using the Blind algorithm.

Qχ/2

Qχ

10 20 30 40 50 60 70 80 90

Q
ue

ue
 S

iz
e

(b
yt

es
)

Time (RTTs)

queue length
queue moving average

κ(t)

Fig. 5. The evolution throughout time of the persistent queuelength, its
exponential moving average andκ using the ErrorS algorithm.

benefits and drawbacks. Additionally, we attempt to quantify

the gains obtained from the use of our proposed algorithms

when compared to TCP NewReno.

Extensive testing of the algorithms was initially performed

through simulation, using the ns-2 simulator [1], and subse-

quent results were then compared to experimental feedback

obtained from a physical testbed. As such, we will detail

our results separately, first focusing on simulation results and

thoroughly evaluating each algorithm in§ V-A, and then

replicating limited, but representative, simulation tests on a

physical testbed in§ V-B.

A. Simulation Results

The base scenario used in the simulations is shown in Fig. 6,

consisting of a dumb-bell topology with a single IEEE 802.11

bottleneck. Traffic consists of greedy flows (FTP-like) between

the wireless nodesW (i) and the wired nodesN(i), in both

directions. For the sake of simplicity we consider the flows

traversing from nodesN(i) to nodesW (i) as downloads,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

100 Mbit/s
d_n ms

100 Mbit/s
d_0 ms

100 Mbit/s
d_1 ms

100 Mbit/s
d_2 ms

100 Mbit/s
d_3 ms

Download

Upload

11 Mbit/s
1 Mbit/s
no RTS/CTS

IEEE
802.11

N(1)

N(3)

N(0)

N(2)

N(n)

R BS

W(0)

W(1)

W(2)

W(3)

W(n)

1 GBit/s
1 ms

Fig. 6. Simulation scenario.

while flows in the opposite direction are considered uploads.

The wired links, with the exception of the link between the

router R and the base stationBS, have a capacity of 100

Mbit/s and a configurable latency. The IEEE 802.11 medium

is configured with no hand-shake mechanisms (RTS/CTS),

and stations use a data rate of 11 Mbit/s and a basic rate

of 1 Mbit/s, unless stated otherwise. The queue length of the

wireless nodes, where the bottleneck occurs, is set to 60 packet

if using XCP, while it is set to 80 packet if using RCP. The size

of data packets is set to 1300 byte, while acknowledgement

packets have 60 byte. We set a higher queue limit for RCP,

because RCP causes higher queue peaks. The parameters of

the algorithms are set to the recommended values, as listed

in Appendix B, and the value of the capacity in ErrorS is

configured to 0 Mbit/s. Additionally, we setQmax to 50

packets, slightly below the actual limit of 60 packet of XCP

and 80 packet of RCP, to reduce the probability of queue

overflow. The simulations do not include packet loss due to

corruption, therefore the only causes for packet loss are queue

overflow and consecutive collisions or persistent interference

at the medium access level.

1) Basic dynamics:Our first experiment explores the dy-

namics and defining characteristics of each algorithm. During

the first 20 seconds, a pair of flows (one download, one upload)

enters the network every 5 seconds. These 10 flows have a du-

ration of 40 seconds, which leads to a total experiment duration

of 60 seconds. Propagation RTT is set to≈ 80ms, neglecting

the propagation delay in the wireless hop. Albeit simple, this

configuration highlights not only how each algorithm performs

during stable periods but also how they react to the dynamic

arrival and departure of flows.

The results of the experiment are plotted in Fig. 7, which

represents the evolution of the congestion window of all

10 flows, and Fig. 8, which shows the evolution of the

instantaneous queue, its moving average and the parameter

κ.

We first focus on comparing how each of our proposed

algorithms perform. While all three operate in a stable manner,

the graphs hint at subtle differences between them. From the

congestion window of the flows we can see that the MAC

algorithm displays good responsiveness to network changes

whilst maintaining low queue spikes, however it also displays

the slowest convergence to fairness and the lowest network

utilisation as is clear in Table I. This difference is explained

by the fact that Blind and ErrorS maintain some degree of

occupancy of the queue buffer at all times, allowing them

to maintain the network saturated persistently. The Blind

algorithm performs well in terms of responsiveness, but reacts

slower to newly available bandwidth freed by departing flows

when compared to the MAC algorithm. The ErrorS algorithm

on the other hand displays some initial delay before fully

utilising the available bandwidth, which reflects the time the

algorithm takes to estimate the error between the configured

capacity (which in this experiment wasC = 0) and the

real capacity. As such, ErrorS is less responsive than the

Blind variant, favouring a smoother response to fluctuations in

available bandwidth. This is particularly visible as flows depart

inducing frequent queue spikes in Blind as the controller

agressively probes for available bandwidth. ErrorS on the

other hand manages to adapt gracefully to such changes as

it maintains an estimate of the total capacity, distributing

available bandwidth before under-utilisation is detected. This

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(a) XCP-Blind

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(b) XCP-ErrorS

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(c) XCP-MAC

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(d) RCP-Blind

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(e) RCP-ErrorS

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(f) RCP-MAC

Fig. 7. The evolution of the congestion window throughout time for all algorithm combinations.

 0

 10

 20

 30

 40

Qmax

 0 10 20 30 40 50 60

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(a) XCP-Blind

 0

 10

 20

 30

 40

Qmax

 0 10 20 30 40 50 60

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(b) XCP-ErrorS

 0

 10

 20

 30

 40

Qmax

 0 10 20 30 40 50 60

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

Queue (Average)
Queue (Instantaneous)

(c) XCP-MAC

 0

 10

 20

 30

 40

Qmax

 0 10 20 30 40 50 60

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(d) RCP-Blind

 0

 10

 20

 30

 40

Qmax

 0 10 20 30 40 50 60

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(e) RCP-ErrorS

 0

 10

 20

 30

 40

Qmax

 0 10 20 30 40 50 60

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

Queue (Average)
Queue (Instantaneous)

(f) RCP-MAC

Fig. 8. The evolution of the instantaneous and average queuesize throughout time for all algorithm combinations.

is in effect the the fundamental difference between Blind

and ErrorS: whereas Blind reacts to changes in both medium

capacity and the level of utilisation, ErrorS reacts mostlyto

capacity changes as it is able to better cope with fluctuations

in utilisation.

Observing the evolution of the queue helps us to further un-

derstand how both queue-driven algorithms work, particularly

taking into account the dynamics of theκ parameter present

in both the Blind and ErrorS variants. During periods of queue

depletion, reflecting under-utilisation,κ rises to its maximum

TABLE I
AVERAGE THROUGHPUT DURING THE INTERVAL[20 : 40] S.

Algorithm Throughput
XCP-Blind 550.4 KByte/s
XCP-ErrorS 551.7 KByte/s
XCP-MAC 519.3 KByte/s
RCP-Blind 551.9 KByte/s
RCP-ErrorS 548.8 KByte/s
RCP-MAC 517.2 KByte/s

value, which is a fraction of the desired maximum buffer

occupancyQmax. With the increase ofκ, more bandwidth

is distributed amongst sources so as to quickly induce full

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

utilisation. As the system approaches this goal, queue length

starts to grow andκ tends to reduce in order to match the

standard deviation of the instantaneous queue, so that during

regular operation the latency introduced by queue build-upis

as low as possible.

Besides algorithm behaviour, many of the differences be-

tween RCP and XCP may also be extrapolated from these

graphs. For one, RCP produces more jitter than XCP, partic-

ularly in the presence of a small number of flows. This is a

consequence of allowing flows to jump start to the target rate

which in turn provokes abrupt changes to network utilisation.

Furthermore, since all flows are kept at a common rateR,

even small offsets from the fairshare rate may be magnified

to signficant errors, inducing a higher degree of oscillation

than in experiments with XCP. This is particularly true if the

quantity of new flows is significant when compared to the

number of existing flows in the system. The resulting over-

allocation of capacity amongst flows leads to a visibly erratic

response. Such behaviour should be seen as intrinsic to RCP

rather than a consequence of any of our proposed algorithms,

and is attenuated as the number of flows in a system increases.

2) Response to abrupt changes in bandwidth:.

We extend our study by analysing how these algorithms

respond to abrupt changes of the medium capacity, such as

when the data rate used by the stations varies synchronously.

Our next experiment consists in setting 10 flows from 10

different stations, which are active throughout the entiresim-

ulation. Abrupt capacity changes are cause by modifying the

data rate across all stations simultaneously. Stations begin the

simulation using a data rate of 54 Mbit/s and a basic rate of

1 Mbit/s. Every 40 seconds the data rate changes: dropping to

11Mbit/s att = 40 s, then 2 Mbit/s att = 80s before rising

again to 11Mbit/s att = 120 s and 54Mbit/s att = 160 s. Note

that the basic rate is kept unchanged at 1 Mbit/s throughout

the simulation, thereby changes in the data rate are not linearly

 1.5e+06

 4.5e+06

 7.5e+06

 40 80 120 160

B
an

dw
id

th
 (

bi
t/s

)

Time (seconds)

XCP-Blind
RCP-Blind

XCP-ErrorS
RCP-ErrorS

XCP-MAC
RCP-MAC

Fig. 9. Throughput measured at the base station (BS). Bandwidth changes
occur at timest = 40, t = 80, t = 120, t = 160 s.

reflected in the overall medium capacity.

The resulting congestion window for each flow and corre-

sponding queue variables are plotted in Fig. 10 and Fig. 11 re-

spectively. The first plot shows that all algorithm combinations

are able to adapt to the variations in bandwidth. The ErrorS

algorithm however seems to lag behind its counterparts: for

both Blind and MAC-based variants, queue overflow caused by

bandwidth reduction is quickly drained, while freed bandwidth

is rapidly utilised. ErrorS on the other hand is less nimble

at distributing available bandwidth and more prone to queue

build-up. This behaviour results from a slower convergenceto

an accurate capacity estimate and is in part a consequence

of the use of more conservative design parameters. While

it would be possible to design an more aggressive ErrorS

controler, the recommended values focus on avoiding greater

queue oscillation.

3) Robustness to rate heterogeneity:Another important

aspect is to evaluate each algorithm’s response when different

stations use different data rates. In such cases, bandwidth

variation is progressive at a macroscopic level but the data

rate may vary by one order of magnitude betwen frames.

To perceive how robust the algorithms are to bandwidth

fluctuations at a microscopic level, we consider 5 pairs of

flows, where each pair consists of one download and one

upload flow, with a data rate of either 2Mbit/s or 54Mbit/s,

while the data rate of the base station is fixed at 11Mbit/s.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

 0

 5

 10

 15

 20

 40 80 120 160

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(a) XCP-Blind

 0

 5

 10

 15

 20

 40 80 120 160

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(b) XCP-ErrorS

 0

 5

 10

 15

 20

 40 80 120 160

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(c) XCP-MAC

 0

 5

 10

 15

 20

 40 80 120 160

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(d) RCP-Blind

 0

 5

 10

 15

 20

 40 80 120 160

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(e) RCP-ErrorS

 0

 5

 10

 15

 20

 40 80 120 160

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

’cwnd_0.tr’
’cwnd_1.tr’
’cwnd_2.tr’
’cwnd_3.tr’
’cwnd_4.tr’
’cwnd_5.tr’
’cwnd_6.tr’
’cwnd_7.tr’
’cwnd_8.tr’
’cwnd_9.tr’

(f) RCP-MAC

Fig. 10. The evolution of the congestion window throughout time for all algorithm combinations. Bandwidth changes occur at times t = 40, t = 80, t =
120, t = 160 s.

 10

 20

 30

 40

Qmax

 40 80 120 160

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(a) XCP-Blind

 10

 20

 30

 40

Qmax

 40 80 120 160

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(b) XCP-ErrorS

 10

 20

 30

 40

Qmax

 40 80 120 160

Q
ue

ue
 (

P
kt

s)
Time (Seconds)

Queue (Average)
Queue (Instantaneous)

(c) XCP-MAC

 10

 20

 30

 40

Qmax

 40 80 120 160

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(d) RCP-Blind

 10

 20

 30

 40

Qmax

 40 80 120 160

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(e) RCP-ErrorS

 10

 20

 30

 40

Qmax

 40 80 120 160

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

Queue (Average)
Queue (Instantaneous)

(f) RCP-MAC

Fig. 11. The evolution ofκ and queue dynamics throughout time. Bandwidth changes occur at times t = 40, t = 80, t = 120, t = 160 s.

Every 10 seconds a new pair of flows enters the network as

another pair with a different data rate leaves, resulting in10

active flows at all times. As a result of this substitution policy,

one data rate will be used by 6 flows while the other will be

used by the remaining 4 flows, with the most popular data rate

changing every 10 seconds resulting in an oscillatory overal

medium bandwidth. The queue variables plotted in Fig. 13 give

yet more insight into how each algorithm behaves. Under these

conditions, the MAC algorithm is the most robust, being able

to filter most of the noise derived from the rate heterogeneity

and maintaining a stable queue. The Blind algorithm is able

to maintain a relatively stable queue under XCP, but unable

to avoid spikes with RCP. The ErrorS algorithm however

performs poorly, once again demonstrating it is unable to adapt

to sudden bandwidth variations, producing frequent and severe

queue spikes.

4) Efficiency and scalability:Another important aspect all

algorithms must retain is efficiency, with particular emphasis

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

 10

 20

 30

 40

Qmax

 50 60 70 80 90 100

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(a) XCP-Blind

 10

 20

 30

 40

Qmax

 50 60 70 80 90 100

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(b) XCP-ErrorS

 10

 20

 30

 40

Qmax

 50 60 70 80 90 100

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

Queue (Average)
Queue (Instantaneous)

(c) XCP-MAC

 10

 20

 30

 40

Qmax

 50 60 70 80 90 100

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(d) RCP-Blind

 10

 20

 30

 40

Qmax

 50 60 70 80 90 100

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

κ
Queue (Average)

Queue (Instantaneous)

(e) RCP-ErrorS

 10

 20

 30

 40

Qmax

 50 60 70 80 90 100

Q
ue

ue
 (

P
kt

s)

Time (Seconds)

Queue (Average)
Queue (Instantaneous)

(f) RCP-MAC

Fig. 13. The evolution ofκ and queue dynamics throughout time. Every 10 seconds, one pairof flows leaves the network and another pair of flows with a
different data rate enters the network.

-7.5e+06

-4.5e+06

-1.5e+06

 40 80 95 120 160

B
an

dw
id

th
 (

bi
t/s

)

Time (seconds)

Estimation Error

(a) XCP-ErrorS

-7.5e+06

-4.5e+06

-1.5e+06

 40 80 95 120 160

B
an

dw
id

th
 (

bi
t/s

)

Time (seconds)

Estimation Error

(b) RCP-ErrorS

Fig. 12. The evolution of the error suppression throughout time in ErrorS.
Bandwidth changes occur at timest = 40, t = 80, t = 120, t = 160 s.

on how network utilisation scales with the bandwidth delay

product. Since utilisation is strongly correlated to traffic char-

acteristics, we refrain from focusing much attention on abso-

lute values. Instead, our intention in this set of experiments

is to show that a growth in the network BDP has a negative

effect on TCP Reno’s efficiency whilst bearing no influence

on XCC protocols.

In this experiment we set a heterogeneous traffic pattern,

compromising both short and long flows. Long flows are

active throughout the simulation, while short flows have an

exponentially distributed duration with a mean value of 10

seconds and a minimum value of 1 second. A total of 30

sources are set, compromised by an equal number of wired

and wireless nodes. Wired paths between end-systemsW (n)

and the routerR were configured with different latencies

between 20 ms and 120 ms, resulting that flows will have

propagation RTTs within[40 : 220] ms. On simulation start, 6

long flows are initiated. Short flows are spawned throughout

the simulation in such a manner that, on average, the number

of active short flows is equal to that of long flows.

Since we are interested in evaluating how efficiency scales

with the network BDP, we could either increase the path

delay or the bandwidth of the wireless medium. We opted

for the latter as the more plausible scenario, particularlywith

the advent of next-generation wireless systems (i.e. IEEE

802.11n). Subsequent IEEE 802.11 rates and related interval

variables used are shown in Table II. Each simulation run lasts

200 seconds, and results from this experiment, shown in Fig.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

TABLE II
MAC LAYER PARAMETERS USED.

Data Rate Basic Rate SlotTime /SIFS
11 Mbit/s 1 Mbit/s 20/10µs
22 Mbit/s 2 Mbit/s 10/5 µs
55 Mbit/s 5 Mbit/s 4/2 µs
110 Mbit/s 10 Mbit/s 2/1 µs
220 Mbit/s 20 Mbit/s 1/.5 µs

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 11 22 55 110 220

E
ffi

ci
en

cy
 (

T
hr

ou
gh

pu
t/D

at
aR

at
e)

Data Rate (Mbps)

XCP-Blind
RCP-Blind

XCP-ErrorS
RCP-ErrorS

XCP-MAC
RCP-MAC

TCP

Fig. 14. Efficiency as a function of medium capacity. TCP Reno utilisation
decreases with the increase of the medium bandwidth, while XCC mechanisms
maintain their properties regardless of the increase of bandwidth.

14, refer to the period[20 : 180] s in order to remove the

effect of the convergence periods.

The resulting plot shows how utilisation scales with the

increase of the capacity of the wireless medium, normalized

to the data rate used in each experiment, and supports the

argument that TCP Reno is unable to scale with the network

BDP due to its fixed dynamics. Depending on the number of

flows and the traffic pattern used, Reno will always be unably

to fully utilize network resources beyond a certain bandwidth

threshold, which in our case was≈ 0.44 Mbit/s. On the other

hand, it should be noted that for a lower BDP, Reno is able to

perform more efficiently than any XCC mechanism. This may

be explained in part due to the significant amount of queue

build-up employed by Reno, which is able to compensate

the bandwidth wasted on flow departure, but also reflects the

ACK-loss effect, documented in detail in [4].

Analysing the various combinations of XCC algorithms, we

conclude that the MAC-based variants achieve substantially

lower utilisation than both Blind and ErrorS. Once again

this is a reflection of the lack of queue build-up which

results in under-utilisation during periods of flow departure or

bandwidth fluctuation. By maintaining small, non-zero queues

consistently, the Blind and ErrorS algorithms are able to drive

utilisation at all times.

Finally, we observe that for the traffic pattern used, RCP

outperforms XCP in terms of efficiency for all algorithm

variants. This is due to the use of aslow startperiod for new

flows by XCP, while RCP jump starts new flows to the existing

fair-share rateR. As such, RCP is able to quickly compensate

the departure of flows leading to better overall efficiency.

5) Flow fairness: Next we compare XCC algorithms to

Reno in terms of flow fairness. Our objective is to show that

XCC algorithms exhibit greater flow fairness than Reno, whilst

demonstrating none of the RTT-bias which the latter implies.

Our experiment replicates the setup used to evaluate algorithm

efficiency in the previous section, this time quantifying flow

fairness by using Jain’s index [9], given by:

J =
(
∑n

i=1
x̄i)

2

n · ∑n

i=1
x̄i

2
(25)

where x̄i is the average throughput of sourcei and n is

the number of active sources during the interval consideredto

calculate the index value.

Fig. 15 plots Jain’s fairness index for every combination

of XCC algorithms, calculated over periods of 1 seconds

and where flows are only considered if active for the entire

interval. The results clearly show that XCC algorithms produce

much more accurate flow fairness than Reno. Whilst there

is not significant difference between the Blind, ErrorS or

MAC variants, RCP proves to be more accurate than XCP.

This is understandable as RCP providesinstantaneousfairness

allowing new flows to immediately use the rate shared by

existing flows. XCP flows, on the other hand, experience an

extended convergence period which may span the order of tens

of control intervals.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s
(J

ai
n

in
de

x)

Time (seconds)

XCP-Blind
TCP

(a) XCP-Blind

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s
(J

ai
n

in
de

x)

Time (seconds)

XCP-ErrorS
TCP

(b) XCP-ErrorS

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s
(J

ai
n

in
de

x)

Time (seconds)

XCP-MAC
TCP

(c) XCP-MAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s
(J

ai
n

in
de

x)

Time (seconds)

RCP-Blind
TCP

(d) RCP-Blind

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s
(J

ai
n

in
de

x)

Time (seconds)

RCP-ErrorS
TCP

(e) RCP-ErrorS

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
ai

rn
es

s
(J

ai
n

in
de

x)

Time (seconds)

RCP-MAC
TCP

(f) RCP-MAC

Fig. 15. The Jain’s fairness index over time. XCC algorithms vs. Reno.

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 1.9e+06

40 60 80 100 120 140 160 180 200 220

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

bi
t/s

)

RTT (ms)

TCP
Blind-RCP
Blind-XCP

ErrorS-RCP
ErrorS-XCP

MAC-RCP
MAC-XCP

Fig. 16. The amount of traffic transported by flows with different RTTs.

We also test the correlation between flow fairness and the

RTT. Using the previous simulation configuration, we only

maintain 10 flows active throughout the simulation, with RTTs

uniformly distributed within[40 : 220] ms. The results from

this experiment are shown in Fig. 16 which shows that the

throughput achieved is inversely proportional to the RTT with

Reno. This is a well known characteristic of Reno, as its long-

term throughput is a function of the inverse of the RTT [13].

XCC algorithms, on the other hand, suffer little impact from

RTT heterogeneity. In our results some bias against flows

with shorter RTTs is visible, which we believe is caused by

the rounding error when using packet units. The smaller the

congestion window, the more significant such a rounding error

becomes and, as such, smaller RTTs are more affected. Apart

from this aspect, XCC algorithms show a clear improvement

over Reno regarding RTT-biased fairness.

6) Queueing delay:Queue dynamics influence the overall

latency perceived by end-systems, which in turn may signifi-

cantly impact on the interactivity of applications. On our final

evaluation we compare queueing delay introduced by XCC

algorithms and TCP Reno. With this in mind, we set a fixed

propagation RTT of≈ 80 ms and test two distinct traffic

patterns: a first simulation with a total of 12 static flows active

throughout the test, and a second simulation which maintains

12 active flows on average, but where half of the flows have

an exponentially distributed duration with a mean value of 10

seconds.

The results are shown in Fig. 17 where the probability

density function (PDF) of the RTTs for each testcase, as

measured by the senders, are plotted. Fig. V-A6 relates to

the simulation run with background flows only, while Fig.

V-A6 corresponds to the simulation run with a mixture of

background and short flows.

As expected, XCC algorithms introduce less queueing delay

than Reno by maintaining smaller queues. The queuing delay

introduced by Reno is essentially tied to the queue buffer size,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

RTT (miliseconds)

XCP-Blind
RCP-Blind

XCP-ErrorS
RCP-ErrorS

XCP-MAC
RCP-MAC

TCP

(a) Static Flows

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

RTT (miliseconds)

XCP-Blind
RCP-Blind

XCP-ErrorS
RCP-ErrorS

XCP-MAC
RCP-MAC

TCP

(b) Dynamic Arrival of Flows

Fig. 17. The probability density function of the RTTs measured by the traffic
sources. These measurements include the propagation RTT (≈ 80 ms) plus
queuing delay.

which for this set of simulations was set to 60 packets. Within

XCC algorithms, MAC-based variants introduce less queue-

ing delay when compared to both Blind and ErrorS, which

stabilize the queue length at some small positive value and

therefore necessarily introduce some additional latency.This

is particularly noticeable in the presence of dynamic traffic

(Fig. V-A6), as utilisation fluctuations caused by the arrival

and departure of flows provoke queue spikes in addition to the

constant queue length maintained by Blind and ErrorS. Despite

this, the queueing delay introduced by Blind and ErrorS in

comparison to the MAC-based algorithm is relatively small

in both cases, especially when taking into consideration the

overall latency reduction obtained by using XCC algorithms

over Reno.

B. Experimental Testbed Results

Our final set of experiments aim at providing proof-of-

concept for the Blind and ErrorS algorithms in real-world sys-

tems. Both algorithms were implemented on top of the existing

IEEE
802.11

R BS

W(0)

W(1)

W(2)
40 ms

100 MBit/s

W(5)

W(3)

Fig. 18. The test-bed setup. Flows traverse from nodeR to the wireless
clientsW (i).

FreeBSD implementation of XCP, provided and maintained by

the Information Sciences Institute (ISI).

1) Experimental setup:Our laboratory setup (Fig. 18) re-

sembles the scenario used in our single bottleneck simulation.

Due to physical limitations we reduce the number of end-

systems participating in the experiments to 5 wireless clients

W (i), 1 base stationBS and 1 wired hostR, where all flows

are generated. The base stationBS is connected to the wired

host R directly using a 100 MBit/s Ethernet connection and

an induced delay of 40 ms. The wireless clientsW (i) are

connected to the base station through IEEE 802.11 Network

Interface Cards (NICs). The base station itself used an IEEE

802.11 NIC configured in AP mode. The wireless nodes were

configured to use a data rate of 24 Mbit/s and configured

with virtual queues. The use of virtual queues was required

to induce artificial bottlenecks but impedes the saturationof

the IEEE 802.11 medium and therefore reduces some of the

variability associated to a wireless network. Within the scope

of our experiments this drawback is acceptable however, since

we are mostly interested in validating previous simulation

results. On wireless nodes the virtual queues are configured

with a capacity of 5 Mbit/s unless stated otherwise, whilst the

virtual queue of the wired hostR is set to a capacity of 90

Mbit/s.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

C. Basic Dynamics

To verify the underlying algorithm properties of both Blind

and ErrorS applied to XCP, we set up a total of 5 minute

long flows initiated 10 seconds apart. This flow pattern allows

us to understand how the network redistributes bandwidth

when new flows arrive and also how available bandwidth is

allocated as flows depart. The resulting congestion window

and queue plots, shown in Fig. 19, and Fig. 20, indicate

accurate responses from both algorithms, with slight improve-

ments over simulation results. Such improvement is probably

a consequence of not being able to use the wireless medium

near its saturation point where bandwidth fluctuations become

more significant. Otherwise, both plots are consistent with

previous simulations, with ErrorS producing a higher degree

of oscillation than Blind but also exhibits a better response

to the dynamic arrival and departure of flows. Interestingly,

the slower convergence of ErrorS is not immediately apparent

in these results. Contrary to our simulation-based results, the

initial ramp-up period of ErrorS observable in Fig. 19 was

rather short, as the controller had been running for some time

before flows started, building up part of the error estimate in

the process. Under a real implementation this is unavoidable

and, as such, we will leave a more detailed analysis of

convergence time to the next section.

D. Response to Variable Bandwidth

To analyze how the queue controller responds to abrupt

changes in bandwidth, we run a similar experiment to the

simulation present in Section V-A2. In this experiment we

run a total of 5 concurrent flows and change the bottleneck

capacity every 20 seconds, dropping from an initial capacity

of 10Mbit/s, to 5Mbit/s, to 1.5Mbit/s and then throttling the

capacity back up in the reverse order. The congestion windows

for all flows and queue variables are shown in Fig. 21 and

22, respectively. From the results plotted in Fig. 21 it is

0.0e+00

5.0e+03

1.0e+04

1.5e+04

2.0e+04

2.5e+04

3.0e+04

3.5e+04

4.0e+04

0 20 40 60 80 100

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (seconds)

(a) XCP-Blind

0.0e+00

5.0e+03

1.0e+04

1.5e+04

2.0e+04

2.5e+04

3.0e+04

3.5e+04

4.0e+04

0 20 40 60 80 100

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (seconds)

(b) XCP-ErrorS

Fig. 21. The evolution of the congestion window throughout time using our
FreeBSD testbed. Bandwidth varies abruptly att = 20, 40, 60, 80 s.

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

0 20 40 60 80 100

Q
ue

ue
 L

en
gt

h
(b

yt
es

)

Time (seconds)

Persistent Queue
Queue Moving Average

κ

(a) XCP-Blind

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

0 20 40 60 80 100

Q
ue

ue
 L

en
gt

h
(b

yt
es

)

Time (seconds)

Persistent Queue
Queue Moving Average

κ

(b) XCP-ErrorS

Fig. 22. The evolution of the queue length, its moving averageand the
parameterκ(t) using our FreeBSD testbed. Bandwidth varies abruptly att =
20, 40, 60, 80 s.

clear that ErrorS has the most difficulty dealing with abrupt

bandwidth changes, something that is particularly evidentby

the large queue build-up that the bandwidth reduction from 5

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

7.0e+04

8.0e+04

0 10 20 30 40 60 70 80 90 100

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (seconds)

(a) XCP-Blind

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

7.0e+04

8.0e+04

0 10 20 30 40 60 70 80 90 100

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (seconds)

(b) XCP-ErrorS

Fig. 19. The evolution of the congestion window throughout time using our FreeBSD testbed.

0.0e+00

5.0e+03

1.0e+04

1.5e+04

2.0e+04

2.5e+04

3.0e+04

3.5e+04

4.0e+04

4.5e+04

0 10 20 30 40 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
(b

yt
es

)

Time (seconds)

Persistent Queue
Queue Moving Average

κ

(a) XCP-Blind

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

0 10 20 30 40 60 70 80 90 100
Q

ue
ue

 L
en

gt
h

(b
yt

es
)

Time (seconds)

Persistent Queue
Queue Moving Average

κ

(b) XCP-ErrorS

Fig. 20. The evolution of the queue length, its moving averageand the parameterκ(t) using our FreeBSD testbed.

Mbit/s to 1.5 Mbit/s att = 40 s has caused. In comparison,

Blind deals with bandwidth reduction effortlessly as only very

short queue spikes are noticeable after bandwidth reduction

at t = 20, 40 s. Both these results are consistent with those

obtained in previous simulations, and further emphasize the

slower convergence which characterizes ErrorS, leading to

increased system delay and potential packet loss on capacity

reduction and under-utilization on capacity increase.

VI. CONCLUSIONS& FUTURE WORK

In this paper we explored the problem of operating XCC

mechanisms in transmission media with variable or uknown

capapcity. We have proposed three alternative control algo-

rithms: Blind, ErrorS and MAC, which we evaluated both

through simulation and in a FreeBSD testbed. Blind and

ErrorS use queue properties such as queue speed or queue ac-

cumulation to infer the instantaneous capacity of the medium

while the MAC algorithm uses information from the MAC

layer, such as idle and busy periods. Our evaluation shown

that these algorithms maintain most of XCC properties such

as stable throughput, low queuing delay, accurate flow-fairness

and high efficiency regardless of the network BDP, making

these algorithms suitable for multimedia transport in high-

speed variable capacity networks, such as IEEE 802.11n.

REFERENCES

[1] “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/.

[2] “Simulink - simulation and model-based design,”

http://www.mathworks.com/products/simulink/.

[3] F. Abrantes, J. T. Araujo, and M. Ricardo, “Flash Crowd Effect in RCP,”

in Proc. of PFLDnet, 2008.

[4] F. Abrantes and M. Ricardo, “XCP for Shared-Acess Multi-Rate Media,”

ACM Computer Communication Review, vol. 36, pp. 27–38, 2006.

[5] H. Balakrishnan, N. Dukkipati, N. McKeown, and C. Tomlin,“Stability

Analysis of Explicit Congestion Control Protocols,” Stanford University

Department of Aeronautics and Astronautics Report: SUDAAR 776,

Tech. Rep., September 2005.

[6] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-

cessor Sharing Flows in the Internet,” inIEEE IWQoS, June 2005.

[7] A. Falk and D. Katabi, “Specification for the explicit control protocol

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 20

(XCP),” Internet Draft (draft-falk-xcp-spec-01), work inprogress, Octo-

ber 2004.

[8] V. Jacobson, “Congestion avoidance and control,” inProc. of ACM

SIGCOMM, 1988.

[9] R. Jain,The art of computer systems performance analysis: techniques

for experimental design, measurement, simulation and modeling. John

Wiley and Sons, Inc., 1991.

[10] A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin, “Achieving Faster Access

to Satellite Link Bandwidth,” in8th IEEE Global Internet Symposium,

March 2005.

[11] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high

bandwidth-delay product networks,” inProc. of ACM SIGCOMM, 2002.

[12] S. Low, L. Andrew, and B. Wydrowsk, “Understanding XCP:Equilib-

rium and Fairness,” inIEEE INFOCOM, 2005.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP

throughput: A simple model and its empirical validation,” inProc. of

ACM SIGCOMM, 1998, pp. 303–314.

[14] J. Postel, “Transmission control protocol,” RFC 793, September 1981.

[15] Y. Su and T. Gross, “WXCP: Explicit congestion control for wireless

multi-hop networks,” inProc. of IEEE IWQoS, June 2005.

[16] P. Wang and D. Mills, “Simple Analysis of XCP EquilibriumPerfor-

mance,” inProc. of IEEE CISS, 2006.

[17] Y. Zhang and M. Ahmed, “A control theoretic analysis of XCP,” in Proc.

of IEEE GLOBECOM, March 2005.

[18] Y. Zhang and T. Henderson, “An implementation and experimental study

of the explicit control protocol (XCP),” inProc. of IEEE INFOCOM,

March 2005.

Filipe Abrantes Filipe Abrantes obtained hisLicenciatura degree in Elec-

trotechnical and Computer Engineering of the University of Porto in 2004.

He has since worked as a researcher at INESC Porto and he is currently

pursuing his Ph.D. degree. His research focus is on congestion control and

wireless routing and forwarding.

João Araújo Filipe Abrantes obtained hisLicenciaturadegree in Electrotech-

nical and Computer Engineering of the University of Porto in 2004. He has

since worked as a researcher at INESC Porto and he is currently pursuing

his Ph.D. degree. His research focus is on congestion control and wireless

routing and forwarding.

Manuel Ricardo Filipe Abrantes obtained hisLicenciaturadegree in Elec-

trotechnical and Computer Engineering of the University of Porto in 2004. He

has since worked as a researcher at INESC Porto and he is currently pursuing

his Ph.D. degree. His research focus is on congestion control and wireless

routing and forwarding.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 21

APPENDIX A

STABILITY ANALYSIS OF THE ERRORS ALGORITHM

We model the ErrorS algorithm using a fluid model in order

to study the stability of ErrorS algorithm as a function of

the values ofα, β andµ. Abstracting from packet granularity,

neglecting queuing delay, and assuming a continuous control

loop an ErrorS system is characterized by the following

equations:

ẏ(t) =
F (t − d)

d
(26)

F (t) = α · (C − y(t))− µ

d
·
∫ t

0

β

α · d · q(t)dt− β

d
· q(t) (27)

q̇(t) = y(t) − Creal (28)

C = Creal + ǫ (29)

wherey(t) represents the aggregate incoming bandwidth,C is

the capacity value configured at the router,Creal is the actual

bottleneck link capacity,ǫ is the router capacity estimate error,

q(t) represents queue length, andd is the system (average)

RTT. α, β and µ are the tunable constants of the algorithm.

Now consider the following nomenclature simplification:

K1 =
α

d
;K2 =

β

d2
;K3 =

µ · β
α · d3

(30)

which allows us to rewrite Eq. 26 and Eq. 27 as:

ẏ(t) = K1 ·(C−y(t−d))−K3 ·
∫ t

0

q(t−d)dt−K2 ·q(t−d)

(31)

Applying the Laplace transformation we finally get:

s·Y (s) = e−sd

(

K1 · (C − Y (s)) − K3 · Q(s)

s
− K2 · Q(s)

)

(32)

which is equivalent to the negative feedback control loop

represented in Fig. 23. The open-loop transfer functionG(s)

Fig. 23. The ErrorS control loop.

of the the system is given by:

G(s) = e−sd · K1 · s2 + K2 · s + K3

s3
(33)

To ensure system stability we have to guarantee that the phase

(or gain) margin of the open-loop transfer function is positive.

To simplify the analysis consider the following condition:

µ = β (34)

which implies:

K3 =
K22

K1
(35)

Using this condition the zeroswz of G(s) are:

wz =
K2

2 · K1
· (1 ± i

√
3) (36)

Now we have to choose the cut-off frequencywErrorS of the

ErrorS system. For the sake of tractability we consider the cut-

off frequency as a multiple of the real part of the frequency

of the zeros of the open-loop response:

wErrorS = n · ℜ{wz} = n · K2

2 · K1
(37)

Applying the inherent condition of the cut-off frequency (i.e.

unitary gain):

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 22

|G(jwErrorS)| = 1 (38)

we get:

β =

√

1 −
(

n
2

)2
+

(

n
2

)4

(

n
2

)3
· α2 (39)

To ensure system stability we must ensure that the open-loop

response phase does not exceed−π at the cut-off frequency:

6 G(jwErrorS) > −π (40)

which results in:

β

α
≤ 2

n
·

arctan

n

2 −
(

n√
2

)2

− π

2

(41)

The final step of the design analysis consists in choosing the

actual cut-off frequency of the open-loop response by choosing

the value ofn. We choosen so that the suppression of the error

is as fast as possible and the importance given to the erroneous

estimation is as low as possible. Considering that the speedof

the error suppression is controlled by the parameterµ (µ =

β), and thatα is the weight given to the erroneous capacity

estimation, we achieve our design objective by choosing the

value ofn that maximizes the ratioβ
α

. In Fig. 24 we plot this

ratio as a function ofn, where it is observable that a maximum

is obtained forn ≈ 3.5. Note that usingn = 3.5 implies a

system cut-off frequencywErrorS :

wErrorS =
3.5

2
· K2

K1
= 1.75 · β

α · d (42)

Applying n = 3.5 in Eq. 39, Eq. 41 we get our final set of

stability restrictions for the parametersα, β andµ:

β = 0.5047 · α2;
β

α
≤ 0.4955; µ = β (43)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

2 3 3.5 4 5

R
at

io

n

β/α Ratio

Fig. 24. The maximum value ofβ as a function ofn.

which, simplifying, come as:

β = 0.5047 · α2; α ≤ 0.9818; µ = β (44)

To reduce the oscillation amplitude and to increase system ro-

bustness to fluctuations we should add a certain phase margin.

Based on simulation results we recommend the utilization of

the following values:

β = 0.1817; α = 0.6; µ = 0.1817 (45)

for which the ErrorS algorithm is stable independently of link

capacity, delay or number of sources.

APPENDIX B

RECOMMENDED PARAMETER VALUES FOR THEBLIND

AND THE ERRORS ALGORITHMS

Blind ErrorS
α 0.4 0.6
β 0.226 0.1817
µ - 0.1817
ρ 0.22 0.15

Qχ 0.541 · Qmax 0.444 · Qmax

τ 0.225 0.37

TABLE III
RECOMMENDED PARAMETER VALUES FOR THEBLIND AND THE ERRORS

ALGORITHMS

We adopt the recommended values ofα, β in Blind from

[11], as the Blind algorithm maintains the control dynamics

of the XCP algorithm. As for the ErrorS algorithms we fix

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 23

α = 0.6 - allowing a reasonable stability margin - and use

the relations found in the previous Appendix that guarantee

stability, to dimensionβ, µ. All the recommended parameter

values are shon in B.

