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Abstract—This paper considers fundamental measurements
which drive TCP flows: throughput, RTT and loss. It is clear
that throughput is, in some sense, a function of both RTT
and loss. In their seminal paper Padyhe et al [1] begin with a
mathematical model of the TCP sliding window evolution process
and come up with an equation showing that TCP throughput is
(roughly) proportional to 1/RTT

√
p where p is the probability

of packet loss. Their equation is shown to be consistent with data
gathered on several links. This paper takes the opposite approach
and analyses a large number of packet traces from well-known
sources in order to create a data-driven estimate of the functions
which relate TCP, loss and RTT. Regression analysis is used to fit
models to connect the quantities. The fitted models show different
behaviour from that expected in [1].

I. INTRODUCTION

The functioning of Transmission Control Protocol (TCP) is
critical to the behaviour of the Internet. It controls congestion
by “backing off” when congestion is detected. Usually this
detection is via packet loss but some variants (beginning with
Vegas [2]) use round trip time (RTT). TCP uses a sliding
window for congestion which controls the amount of data “in
flight” between the sender and the receiver. Throughput is then
a function of this window size which depends on loss and RTT.
It also seems likely that these quantities are not completely
independent. Increased throughput may lead to increased loss
and short flows may be dominated by RTT as the windows
size is initially small.

In their classic paper, Padhye et al [1] begin with assump-
tions about how TCP works and derive a formula for TCP
throughput for a single stream. They derive a number of for-
mulae for how TCP depends on loss and RTT making various
assumptions. The simplest formula they give for bandwidth
B(p) as a function of packet loss probability is [1] (formula
20):

B(p) =
1

RTT

√
3

2bp
+ o(1/

√
p),

where RTT is the round trip time, p is the probability of
packet loss and b is a TCP parameter. For mathematical
tractability a number of simplifying assumptions are made
e.g. RTT is constant for the connection and p is constant and
independent for every packet. The model assumes TCP Reno
although many other flavours are used in modern networks.

This paper takes the “data driven” approach, in some ways
the opposite to model building. The research begins with the
data and from the data attempts to find those equations which

best explain the observations. The aim of this paper is to
fit equations in the form T = β0x

β1yβ2 · · · where T is the
throughput of the flow, x and y are observations which might
affect this (e.g. loss or RTT) and βi are parameters to be fitted.

The data sets are described in section II and the recon-
struction of TCP streams, filtering and processing applied
are described in section II-A. The models and results of the
fitting are described in section III. Finally, section IV gives
conclusions and future work.

A. Background

Estimation of quantities fundamental to Internet protocols
have aroused much research interest. RTT is important for
applications such as anycast services [3] and content delivery
overlays [4]. Vivaldi [5] is a well known system that estimates
RTT by embedding end hosts in a 2+1D coordinate system in
order to produce estimates of delays between arbitrary host
pairs. iPlane and iPlane nano [6], [7], create an “atlas” of the
Internet based on approximate routing paths known as BGP
atoms [8]. It builds up a database of estimations of RTT and
traffic levels between each of a number of intermediate points
and then attempts to reconstruct which paths two end hosts
will take to reach each other and the qualities of those paths.

Various papers have taken the model based approach to
explaining flow characteristics begun with [1]. For example,
[9] extends [1] to the slow start phase of TCP and [10] relaxes
some assumptions made about packet losses. In [11] a fluid
flow approximation to TCP flow is used to study active queue
management.

“Data-driven” approaches have been taken before. In [12]
the authors look at flow duration and flow rate distributions
and note a strong correlation between the size of a flow and its
bandwidth. The same correlation is noted in [13] and attributed
to timeout mechanisms for small/medium sized flows – the
authors classify flows according to size (elephant/mouse),
duration (tortoise/dragonfly), and then analyse correlations
between these classes.

Related work has also tried to predict performance. The
sender and receiver have been used to predict RTT and jitter
[14]. Forecasting traffic on an Internet link is studied in
[15], [16]. End-to-end performance forecasting is attempted
in [17] but the data for validation is limited. Lakshman and
Madhow [18] look at how several TCP flows compete using
a mathematical model of packets entering a single bottleneck



with different TCP flavours and a single bottleneck. The results
are a good match to real data.

II. DATA PREPARATION AND FILTERING

This paper relies on analysis of large numbers of passive
traces. Two sources are used, MAWI and CAIDA – all of the
data analysed in this paper is publicly accessible.

The CAIDA OC48 Traces Dataset from 2002 were used1.
These data are from 14th of August 2002. 24 traces were
used from 16:00 UTC to 19:00 UTC with each trace being
5 minutes long. Overall this data set consists of 1.42 billion
packets originally containing 876GB of data.

The CAIDA Anonymised 2011 and 2012, OC192 Internet
Traces were used2. The 2012 data are 29 traces from Equinix
to San Jose on 19th January 2012 from 13:00 to 13:29 UTC
with each trace being 1 minute long. This data set consists
of 1.58 billion packets and 1.12TB of data. The 2011 data
are collected on two separate days at the same site. 26 traces
are used from 20th January 2011 from 12:59 to 13:25 UTC
– this will be known as OC192 2011 A and consists of 1.3
billion packets originally containing 662GB of data. 14 traces
are used from 17th February 2011 from 13:00 to 13:14 UTC
– this will be known as OC192 2011 B and consists of 927
million packets originally containing 582 GB of data.

MAWI provides data from 1999 onwards on a Japanese
network connecting universities and research institutes
http://mawi.wide.ad.jp/. The data consist of the traffic captured
for 15 minutes every day and has been used for long-term data
analysis [19]. To get a sample which spans a long time period,
in this paper data are sampled from the 15th day of every
month from October 2006 to December 2012. These are 63
snapshots each 15 minutes long containing 1.36 billion packets
originally containing 982 GB of data. This choice was made
(rather than selecting adjacent days) to examine the dynamics
in data over a long period. Over this period the network had
several changes and upgrades.

A. Data processing

The techniques used to get estimates for per-flow loss,
throughput and RTT are relatively commonly used. Multiple
pcap files are used from each data source and the processed
results aggregated. RTTs can be inferred in two ways. Firstly,
if both directions of data are seen then the time between
a SYN/SYNACK/ACK triple handshake gives an estimate.
This also works even if only one direction of data can be
seen provided the SYN and ACK are present. Secondly, if
data flows in both directions on the connection then the time
between points A and B can be inferred from the measurement
point M. If both directions can be seen and some data is sent
in both directions then the time M to A to M can be measured
by considering the time from a packet seen at M going to A
to receive and ACK. The time from M to B to M can be

1Colleen Shannon, Emile Aben, kc claffy, Dan Andersen, Nevil Brownlee
http://www.caida.org/data/passive/passive oc48 dataset.xml

2kc claffy, Dan Andersen, Paul Hick
http://www.caida.org/data/passive/passive 2011 dataset.xml

estimated in the same way and the two added together. The
average of the SYNACK RTT (first method) and the median
data RTT (second method) was used here.

For data flowing from A to B two separate types of loss
must be considered. The first case is when a data packet (or
its ACK) is lost after the measurement point M. In this case the
packet will be seen twice at the measurement point, the loss
is inferred from this retransmission. The second case is when
the packet is lost before the measurement point. In this case,
the packet will be retransmitted and hence seen out of order at
the measurement point. Retransmit loss plus out of order loss
divided by the number of data packets is the estimate used
for the proportion of loss. The loss proportion is defined as
the number of losses detected divided by the total number of
packets.

In some cases flows are not symmetrical and the data path is
not the same as the return path. If some packets are not seen in
both directions then the RTT cannot be extracted except with
the SYNACK method. It may also be the case that loss cannot
be properly estimated if the “wrong side” of the connection is
seen. To avoid such issues, flows with packets captured only
for one direction have been filtered out – in most cases this is
a noticeable but small percentage of the total data. However,
in the case of the CAIDA OC192 traces the largest proportion
of the data is rejected in this way.

In order to avoid effects caused by the truncation of flows
due to flow end, flows are also removed if they have any
packets within 2 seconds of the end of a trace – this is typically
a small but significant proportion of flows (for example, 1.24%
of flows in the OC48 data but as high as 5.26% in the OC192
2012 data).

III. DELAY AND THROUGHPUT STATISTICS

Before fitting the models it is useful to look at the quantities
we are planning to fit and how they relate. The quantities can
be plotted in pairs as “heatmaps” (or 2D histograms) with, for
example, RTT on one axis and throughput on another. The
axes are split into logarithmic bins over the range of the data
(except when loss is on an axis in which case it is linear).
Each bin is coloured according to the number of flows which
fall into this category.

Figure 1 shows results from the three different data sets
for different parameter pairs. All data sets show the same
pattern when comparing the same two parameters. Figure
1(top) shows the relationship between throughput and the
number of packets in a flow. Since the early part of the flow is
“slow” (because of the cautious initial window size of TCP)
it should be no surprise that a correlation between number
of packets and throughput is seen for small flows. However, it
seems that this correlation continues even for flows with many
packets. Noting the logscale on this diagram the relationship
seems to continue for much longer than might be expected,
seemingly beyond the first 1,000 packets of the flow. Figure
1(middle) shows the correlation between throughput and RTT.
This shows the expected connection that increased RTT is
correlated with decreased throughput. Figure 1(bottom) shows
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Fig. 1: Throughput against number of packets in a flow for
OC192 2012 (top), throughput against RTT for OC48 (middle)
and throughput against loss for MAWI (bottom).

the relationship between throughput and loss in the data. The
apparent large proportion of files with extremely high loss
is misleading. The OC48 data has an average of 5.65% loss
which is high but the OC 192 2012 data has an average loss
rate across flows of only 0.684%. Again a clear relationship
can be seen in the diagram with, as expected, high loss
correlated with low throughput. A plot of RTT versus number
of packets in a flow (not shown due to space restrictions)
shows the connection between RTT and the number of packets
in the flow. No particular connection was expected between
these quantities but a clear connection emerges. Flows with
low RTT have more packets. This is not because flows are
being terminated by the measurement cutting off (flows which
cut off at the end of the measurement period are filtered). It
may be that users terminate “slow downloads” of long files
or that large files are more likely to be obtained from nearer
caching servers (because the throughput is more important).

A. Fitted models

Linear models assess relationships between observations of
a variable to be modelled and several explanatory variables.
The models fit parameters to given equations relating the
variables (the equations need not be linear but the terms must
be combined in a linear or log-linear way). These models are
standard in a wide variety of fields for understanding the rela-
tionship between variables. So, for example T = β0D

β1pβ2ε
where T is the throughput of the flow, D is the delay (RTT )
of the flow, p is the proportion of packet loss in the flow and
ε is an lognormal error term with mean 1. The βi are the
parameters the model fits to reduce the variance of the error
term. The “goodness of fit” of such a model is judged by the
R2 (coefficient of variation) parameter which is in the range
(0, 1) with 1 indicating the data fits the equation perfectly.

The data sets are split into equal-sized, non-intersecting
calibration, cross-validation and test data sets with each flow
being randomly assigned to one and only one such set. This is
a standard procedure in statistical modelling to allow a large
number of models to be fitted but avoiding the possibility
of over-fitting by creating models which apply only to that
data. Initial model fitting to discover β parameters is done
with the calibration data. Fitting of exogenous parameters and
comparison between these models is done with the cross-
validation data. The final reported goodness of fit is given
on the test data.

As is standard, the model fitting is done by performing a
log fitting on a linear model log(T ) = log(β0)+β1 log(D)+
β2 log(p)+ log(ε) which is simply a transform of the original
model. A problem arises with p since many flows (the vast
majority) have no loss at all. The fitting, however, is done
on the logarithm of the quantities (to get the multiplicative
model). To avoid the problem with log 0 a constant term was
added to p – this value pm was fitted as a separate exogenous
parameter by scanning a range of values and adding the one
with the best R2 value in the cross validation data. Note that
the value of pm chosen was often at the extreme of the range
used (hence a number of models have the same fitted pm).
Models were also fitted to large flows (P > 1000 only) to see
if fit was improved by looking at only flows which had gone
past the initial exponential growth phase. A comparison was
also made by fitting T = β0/(D

√
p+ pm) and this will be

referred to as the base model as it is the closest model that
can be fitted to the Padhye et al [1] model (with the pm term
necessarily added to avoid the p = 0 problem). All results are
given to three significant figures. In these results the R2 values
are always those on the test data whereas the β parameters are
fitted on the calibration data and the pm is optimised over the
cross-validation data.

The OC192 2012 passive data set after processing has 4.47
million packets containing 3.68GB of data in 57.4 thousand
flows. The loss rate is low at 0.684%. The following table
shows the best models and base model with fitted parameters.



Model for T R2 Note
15.7D−0.94(p+ pm)−0.563P 0.456 0.641 pm = 0.105

77.2D−0.975P 0.455 0.635
316/(D

√
p+ pm) 0.0227 pm = 0.105

The best model showed T had a relationship with D and
p with nearly the expected coefficients −0.94 not −1.0 and
−0.563 not −0.5 but also a relationship with length in packets
P . The high R2 shows this model is an excellent fit to the data
but the model is almost as good if the dependence on loss p
is dropped. The base model without P is a poor explanation
of the data.

The MAWI data set is the largest analysed here and the
data set is also the longest in time, spanning several years
whereas the other data sets were continuous over minutes or
hours. After processing the MAWI data set has 243 million
packets containing 174GB of data in 5.04 million flows and a
mean loss rate of 2.38% (although this changes greatly during
the lifetime of the flow). The table below shows three fitted
models.

Model for T R2 Note
0.15D−0.664(p+ pm)−0.416P 0.635 0.282 pm = 0.0132

0.648D−0.583P 0.576 0.332 P > 1000
111/(D

√
p+ pm) 0.0904 pm = 0.105

Perhaps because of its length and hence variation in time
no models here were a particularly good fit. The best model
relates RTT, loss and flow length in packets but has R2 =
0.282. A better model exists of only long flows fitting against
only RTT and length of flow. The base model has a particularly
poor fit and low R2.

The OC48 from 2002 is the oldest data set analysed. After
processing it has 93 million packets and 48.9 GB of data,
2.85 million flows and a mean packet loss rate of 5.65%.
This relatively high mean packet loss was a product of quite
a congested network and some flows with very high loss.

Model for T R2 Note
102D−0.929(p+ pm)0.391P 0.339 0.362 pm = 0.105

29.7D−0.89P 0.354 0.35
193/(D

√
p+ pm) 0.207 pm = 0.105

The best fit model here is quite strange as the coefficient for
p is in the wrong direction. However, as has been previously
noted P and p are correlated. Removing p did not greatly
reduce the fit of the model as assessed by R2. The base case
model had the highest R2 of all the data sets.

The two OC192 data sets from 2011 are shown next. These
are the same link on different days (approximately a month
apart) and might be hoped to have similar fits to models.
After processing, OC192 2011 A has 6.97 million packets in
26 minutes and OC192 2011 B has 6.31 million in only 14
minutes. Set A had 5.26 GB of data and B had 5.51 GB. Set
A had 125 thousand flows and set B 66.1 thousand. The loss
rate for A is 0.766% and for B is 0.43%. As can be seen, the
two data sets are quite different in terms of traffic level with
B having more traffic per unit time but less loss. The models

for A are:
Model for T R2 Note

0.712D−0.665(p+ pm)−0.661P 0.429 0.454 pm = 0.105
4.62D−0.698P 0.41 0.448
251/(D

√
p+ pm) 0.109 pm = 0.105

The best fit model had the usual form, expected parameters
and a middling R2 value. Again removing the p did not greatly
harm the fit to the data and the base case model was a much
worse fit. The models for B are:

Model for T R2 Note
21.5D−0.924(p+ pm)−0.581P 0.419 0.616 pm = 0.105

156D−0.981P 0.386 0.611

562/(D
√

(p+ pm)) 0.19 pm = 0.105

For OC192 2011 B, similar patterns are seen to the A data
but the fit to data is much better. Again, the dependence on p
is not strong but the fit with flow length is.

In all cases the model form T = β0D
β1(p + pm)β2P β3

was the best fit even after accounting for the extra parameter
(using adjusted R2). In one case a subset of the data was a
better fit. In every case removing the p term did not greatly
worsen the fit. It seems that the dependence on the packet
length is a robust finding although the exact parameter size
varies. Experimenting on only long flows to remove the effects
of slow start did not remove this finding.

B. Evolution of parameters
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Fig. 2: The evolution of the β1 parameter through time.

Finally it is interesting to investigate they dynamics of
these data in the individual data files. Here the simple model
T = β0D

β1 is fitted for the data from individual pcap files.
For the OC48 data each file represents 5 minutes of data, for
the OC192 2012 data each file represents 1 minute and for the
MAWI data each file represents 15 minutes but separated by
one month. Figure 2 shows how the OC48 and OC192 2012
data vary through time. The time axis is normalised so that 0 is
the first and 1 is the last data file plotted. The lines are printed
with confidence intervals based on the standard error around
them (for the OC48 and MAWI data these are too close to
see). Model fits on the entire data β1 = −1.22 ± 0.00439
for the OC192, −0.91 ± 0.000804 for the OC48 data and
−0.76 ± 0.000812 for MAWI. The parameter does not vary



much through the OC192 data but it is seen that the model
estimate is based on the majority of the data having β1 > −0.9
and a large excursion for several data files which move β1
down to −1.2. This dynamic behaviour suggests that the
model is not “universal” for this link, that is changes in traffic
behaviour change how the model fits. The periods of decreased
β1 for OC48 corresponds to a sharp traffic increase (around
20%) but a decrease in mean packet loss (suggesting high
throughput sources on low loss paths). The MAWI data is
the most dynamic in its behaviour and this concurs with the
idea that the parameter values may be “stable” for nearby
time periods but vary over longer periods as the levels of
traffic change (the OC48 and OC192 data are from subsequent
minutes, the MAWI data is separated by a full month).

IV. CONCLUSIONS

What can be learned from analysis of the relationships
between RTT, loss, flow length and throughput? The data
here only weakly supported the Padyhe et al relationship
T = 1/(D

√
p), however, this should not be taken as a

criticism of that paper as the contexts are so different. The
value of p from the Padhye model is the mean probability of a
packet in a flow being lost which cannot be directly observed.
Here this is represented by the observed proportion of loss
(also callsed p here) and an additive constant pm to avoid
a zero problem. The Padhye model is only meant to fit for
long flows – model fits were also tried on long flows only in
this paper but the results were little different in most cases.
This said, four of the five data sets fitted parameters for p and
D close to −0.5 and −1.0 of the Padhye model. In the end
though, the correlation between throughput and observed loss
in flows was poor.

More important than the correlation with packets lost was
the relationship with the flow length in packets P . In all data
sets there was a strong relationship with values around P 0.5

and this was a much more important relationship than that
with loss. This backs up the work of Zhang et al [12] which
also notes that T and P are correlated but doesn’t attempt
to find a functional form. In fact, with the exception of the
OC48 data the full fitted model form is markedly similar for
the traces despite the fact that they are from different times on
different equipment with different levels of congestion. For the
relationship between only throughput, RTT and flow length in
packets, all models had similar relationships. Looking at the
dynamic evolution of the model parameters, it seems that the
parameters are stable over the shorter term (minutes) and vary
in the longer term (years) by a greater amount.

Despite the complex nature of the interactions being exam-
ined, extremely simple models can explain almost 2/3 of the
variance in the data in the best case found here (R2 = 0.641).
With development this type of data driven explanatory model
could provide great insights into the real behaviour of TCP in
the wild. Future work could include other model components:
TCP flavour, maximum window size and separate loss mech-
anisms. While the work in this paper came from the analysis
of a large number of traces, the actual model fitting for the

statistical models is lightweight and can be done in on the fly
in real time. That is to say, a machine monitoring its own TCP
connection could estimate model parameters and hence predict
flow completion times very simply before a connection was
started and improve this prediction while the connection was
ongoing.
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