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Abstract—One of the challenges that distributed systems
designers face is that their performance is very sensitive to
the characteristics of the underlying network. Hence, simple
models that accurately describe some statistical properties of this
substrate can be very helpful in the modelling, simulation and
design of Internet-scale distributed systems.

In this paper we present a model for the analysis of Internet
round trip times (RTT) and its relationship with geolocation
distance. This model is based on a novel RTT dataset comprising
∼19 million measurements between ∼54 thousand measurement
points. This model can then be used to accurately predict median
RTT for a given geographical distance.

Our main contribution is a procedure for the geographic
analysis of RTT that allows the recovery of large-scale routing
information. We accomplish this by investigating RTT on the
basis of disjoint, large-scale geographic components. By applying
a novel median-based, least-squares fitting algorithm to traffic
flows between these components, we analyse their RTT\distance
behaviour and compute a large-scale routing excess that quantifies
the extra distance beyond the great circle that packets traverse
when they flow between large-scale geographic areas.

I. INTRODUCTION

One of the difficulties in the design and modelling of
Internet-scale distributed systems is that that their performance
can be markedly affected by the performance characteristics
of their underlying network substrate. Unfortunately, the sheer
complexity of the Internet precludes a full model or simulation
of these characteristics. It is however possible to use network
measurements to develop scalable models based on specific
statistical properties of the Internet. In this paper we focus on
Round Trip Time (RTT) because it is both simple to measure
and interpret, and widely used in the design of performance-
sensitive applications such as network anycast [18], [30] or
media content delivery [11], [34]. To address the relationship
between geographical distance and RTT we collected one of
the most comprehensive sets of Internet delay measurements
available today, comprising more than 200 million individ-
ual RTT samples taken between ∼54 thousand measurement
points. These measurements were then used to generate a
model that can explain ∼94% of variability in median RTT.

Our work goes beyond previous contributions in the topic
by explicitly considering the large-scale routing of Internet
flows and its effect on RTT. For instance, many earlier works
treat RTT as a topological path property to be estimated in
isolation [15], [26], [27], and disregard additional information
such as geolocation. Although other works have analysed the
relationship between RTT and interdomain routing [33], [36],

[33] or its geographical properties [21], [28], their dependency
on geolocation-aided traceroute surveys has limited them to
specific world regions (typically North America, Europe and
Asia Pacific). We improve upon these works by significantly
expanding the scope of data collection. Our dataset provides
sufficient geographic diversity to to uncover geographic prop-
erties of RTT relevant for the entire Internet.

Our contributions are twofold. First, we present a data-
centred model for the analysis of RTT and its large-scale
geographic properties that treats measurements as realisations
of a multidimensional random variable X. We build an ap-
proximation for Φ(x), the density of X, by collecting an RTT
dataset that includes ∼200 million RTT samples between ∼54
thousand measurement points and creating a contingency table
(the multidimensional equivalent of a histogram).

Second, we present a procedure for the geographic analysis
of Φ(x) that allows the recovery of large-scale routing infor-
mation. We achieve this by splitting Φ(x) into 66 individual
contributions, each representing the RTT\distance behaviour
between two large scale geographic areas denoted as subconti-
nental zones. By applying a novel median-based linear fitting
algorithm to each one of these components, we characterise
their RTT behaviour as either increasing or decreasing with
great circle distance (i.e. the distance over the spherical surface
of the Earth). Then, we hypothesise that those components
with decreasing RTT behaviours are the result of routing
paths that significantly deviate from the great circle segment
connecting the relevant subcontinental zones, and propose
a coordinate transformation that maps these components so
that they manifest increasing RTT behaviour. This process
yields a routing distance for every decreasing component that
describes the actual distance that packets flowing between the
relevant subcontinental zones need to traverse. We then com-
pare the routing distances found for all decreasing components
with information directly obtained using geolocated traceroute
probes, and find agreement between the two. This allows us to
present a purely linear model relating median RTT and routing
distance, and to show that it explains ∼94% of the variability
in median RTT as a function of geolocation distance that we
observe in our dataset.

The structure of the paper is as follows. We commence
in §II, where we detail our measurement methodology, and
continue in §III by presenting our modelling and analysis. In
§VI we present other research contributions that relate to ours,
and our conclusions in §VII.
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II. MEASUREMENTS

A comprehensive study of the geography of Internet RTTs
requires the measurement of round trips between a large num-
ber of measurement points in as many distinct geographical lo-
cales as possible. Due to their ubiquitous nature, DNS servers
are ideal for this purpose; this led us to select TurboKing [24]
as our main measurement technique.
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Fig. 1: Operation of TurboKing

The basic operation of TurboKing is presented in Fig. 1.
Consider two DNS servers, A and B, along with the TurboKing
measurement point M. Measurement proceeds as follows.
First, M behaves as a DNS client, and sends a resolution
query to A for a hostname for which M itself is registered
as authoritative. A forwards the query to M, which allows
M to estimate the RTT between itself and A. Measurement
continues with M taking the role of a DNS server which
informs A that B can resolve its original query. This causes
A to forward the query to B. When B receives this request,
since it pertains to a hostname for which it has no records, it
responds with an error which is recursively sent to M via A.
This allows M to estimate the RTT between itself and B via
A. Along with the first measurement taken, the RTT between
M and A, this second measurement allows M to calculate the
RTT between A and B.

The RTT data set presented in this paper was obtained using
this technique. Data collection took place from May 2011 to
February 2012, and comprises ∼200 million individual RTT
samples between ∼54 thousand recursive, non-forwarding
DNS servers. This raw data was processed to remove short-
term variations and caching effects (see §II-B), yielding ∼19
million RTT measurements. We now describe the two main
phases of our data collection effort: the collection of a set of
appropriate servers, and the use of this set to measure RTTs.

A. Collection of Measurement Servers

Our collection engine operates by taking IP addresses or
hostnames as inputs, performing DNS queries for them, and
extracting candidate DNS server hostnames from the SoA or
NS records in the responses; we also make use of related
A records if present [29]. Both forward and reverse queries
were performed as required. All the candidate DNS server
hostnames that our collector obtained were then tested for their
usefulness as TurboKing measurement points, and their backup
servers were used to further seed the set of input IP addresses
or hostnames. Thus, every seed IP address or hostname became
the starting point for a recursive traversal of the the graph of
DNS severs pointing to each other as backups through SoA
or NS records. Unnecessary queries were avoided by keeping
a database of all IP addresses, hostnames and domains for

which DNS queries had been performed; unnecessary load on
the DNS system was avoided by rate-limiting.

To ensure adequate coverage, we provided diverse starting
points to the aforementioned graph traversal procedure. We
used the following as seeds for our collection algorithm.
• IP addresses:

– Forward DNS: Addresses obtained from forward
DNS lookups of found hostnames.

– Random: Addresses obtained by generating random
32-bit integers in the routable IP space.

– DNS Server Lists: Addresses obtained from DNS
server lists (e.g. among others, those included in
DNS performance comparison applications).

– iPlane: Addresses extracted from iPlane [26] data.
– Firewall and BitTorrent Blocklists: Lists of addresses

in specific categories (enterprise, residential, govern-
ment, etc.) We ensured that we had representatives
from all categories.

– BitTorrent ANNOUNCE Messages: IP addresses of
BitTorrent peers participating in the 500 most pop-
ular torrents in popular sites (e.g. The Pirate Bay,
ISOHunt). We periodically queried all trackers for
each swarm and eliminated all duplicates.

• Hostnames:
– Reverse DNS: Hostnames obtained from reverse

DNS lookups of found IP addresses.
– Web Search: Hostnames obtained from search en-

gines. This processed started with a set of ∼40 word
lists, selected to span a large selection of topics and
languages. Four-word sentences were created using
words from the same language, and submitted to
three different web search services. Webserver host-
names were then extracted from the URLs present
in the search results.

– Webserver hostnames: Hosts and domains present on
various top N website lists.

This process was performed only for a single period of four
weeks prior to the the beginning of the collection process.
From that point on, the only process adding DNS servers into
the database was the detection of forwarders; i.e. DNS servers
that responded to queries that were originally issued to other
DNS servers. The process yielded a total of ∼350,000 DNS
servers, out of which ∼54,000 were non-forwarding, recursive
servers useful as measurement points.

B. Collection and Processing of measurements

In order to ensure a representative sample, each endpoint of
an RTT measurement was selected randomly from the avail-
able set of DNS servers; the only check made was to ensure
that the two were distinct. Each RTT measurement consisted of
10 individual samples spaced 10 seconds apart. The median of
these estimates is taken as the RTT measurement; this allowed
the system to filter out any episodic RTT effects. Due to this
procedure, our collected ∼200 million samples yielded a net
∼20 million RTT measurements. Additional processing was
required to remove spurious results arising from DNS servers
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overriding the DNS Time-To-Live (TTL) [29] values present
in the measurement queries with their own. Since TurboKing
relies on the whole measurement path being traversed, its DNS
messages must always have a TTL of zero. If this value is
overridden by a server, the second hop of the measurement is
eliminated, leading to RTT estimates close to zero. Although
this behaviour was not reported in [24], we found that it
affected ∼7% of our measurements, and could lead to a
underestimation of the true RTT between two measurement
points. We eliminated this error by making use of a very simple
heuristic that relies on the fact that all our DNS servers were
geolocated. If the RTT estimated for a given pair of DNS
servers implied a signal propagation greater than the speed
of light in vacuum (299.792 km/ms), the measurement was
discarded as spurious. After removing these measurements,
the dataset was reduced to ∼19 million RTT measurements.

C. Dataset Coverage

Subcontinental Zone Servers
Africa 519

Central Asia and the Middle East 1,490
Asia Pacific and China 7,730

Indian Subcontinent 449
North America (North) 21,276

North America (South) and the Caribbean 526
Oceania 1,116

South America (West) 270
South America (East) 1,333

Eastern Europe 6,798
Western Europe 12,953

TABLE I: Geographic distribution of measurement servers

Since we were interested in the relationships between
RTT and geographic distance, we made extensive use of IP
geolocation databases. Specifically, we used both MaxMind
GeoLite and [5] and Neustar IP Geolocation [6]. To assign
measurement points to subcontinental zones, we were inter-
ested not only in associating latitude and longitude data with
IP addresses but also with the country in which servers were
located. Unfortunately, we found that geolocation databases
frequently associate an IP address not with the country in
which it is physically located (as defined by its latitude and
longitude), but with the country associated with its admin-
istrative aspects (e.g. the country of the entity that owns
it). This led to gross errors at the country level, where IP
addresses associated with country were placed in another one
by their latitude/longitude. To avoid these errors, we loaded the
GeoNames city names database [4] to a spatial index [20] and
used it to resolve IP addresses to cities through their latitude

and longitudes only. This resulted in 122,952 place bindings
representing cities with 1,000 inhabitants or more, which we
then used to obtain the country associated with a geolocated
IP address. This greatly reduced these gross errors. Regarding
errors in the latitudes and longitudes themselves, although
these are non-negligible [32], we assume them to be accurate
at least to the country level. Hence, we expect these errors to
be relatively small when compared to the media propagation
delay, which dominates RTT at a global scale.

As indicated by our geolocation and AS lookup sources,
measurement endpoints for our dataset were present in 5,455
autonomous systems over 3,384 cities and 189 countries.
According to [1], 99.6% of global Internet users belong to
a country where there is at least one measurement point.
To verify the IP coverage of our measurement endpoints,
we compared it with a daily routing table snapshot obtained
from the RouteViews server in WIDE [10]. Of the 216,344
prefixes received at that point, 20,881 included at least one
measurement server. Overall, 476 million addresses (∼32% of
1.017 billion routable IP addresses) belong to network prefix
where there is at least one measurement point.

III. MODELLING PRELIMINARIES

In order to better elucidate the large-scale effects that
Internet routing has on RTT, we divided our measurement
endpoints into 11 subcontinental zones consisting of geograph-
ically adjacent countries, as shown in Fig. I; this leads to
a set of 66 distinct zone pairs. To map an IP address to a
zone, we first map it to a country, which is then mapped to
a subcontinental zone. Since RTT measurements are always
performed between two distinct hosts, all our measurements
are defined for distinct pairs of geolocated hosts. We will focus
our analysis on two variables. The first one is the geodesic
(great circle) distance in kilometres between the geolocated
positions of both hosts; this will be denoted Xd. The second
one is the Internet RTT (Round Trip Time) in milliseconds,
denoted as Xt. To simplify the analysis, we discretised Xd

and Xt to 300 bins, yielding a resolution of 67 km and 3.3
ms per bin for Xd and Xt respectively.

We model our data as a multidimensional discrete random
variable X = {Xd, Xt}. Each measurement in our data set
is then one sample of X, whose joint probability distribution
will be denoted as Φ(x). We construct an empirical probability
density for Φ(x) simply by considering a contingency table
[17] with columns indexed on the distinct bins of Xd, rows
indexed on those of Xt, and holding the frequency in which
value pairs (Xd, Xt) are observed in the dataset. Since we
choose the endpoints for each one of our measurements
randomly, we expect this contingency table to converge in
frequency to the appropriate density Φ(x).

A. Least-Squares Median Line Fit

Since Internet RTTs are prone to outliers, estimators based
on medians tend to be much more robust than those based on
means. Furthermore, prior work has shown improved linear
fit when regressing the medians of the RTT distributions at
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given great circle distances [11]. Rather than using simple
linear regression on the medians, for this paper we develop a
lightweight, median-based least-squares fitting technique that
approximates an underlying probability density.

To assess how well does a candidate function xt = f(xd)
that relates the RTT xt and great circle distance xd approx-
imates the median of Φ(xd, xt) for each xt, we propose the
use of the median distribution error functional

E2
Φ(f(xd)) =

∫ ∞
0

(∫ f(xd)

0

Φ(xd, xt)dxt

−
∫ ∞
f(xd)

Φ(xd, xt)dxt

)2

dxd.

Then, the RTT\distance approximation problem can be for-
mulated as a variational problem in which we seek a function
xt = f(xd) that minimises E2

Φ(f(xd)). Formally:

Minimise:
f(xd)

E2
Φ (f(xd)) . (1)

Following [11], [22], we are interested in a constrained solu-
tion of (1) where f(xd) is linear; that, is, where xt = αxd+β.
In that case, (1) reduces to finding the optimal α and β that
minimise the median squared error E2

Φ.
Since we will be comparing different fits, we need a measure

for the goodness of fit that a given α and β provide. To this
end, we define a goodness of fit measure that is analogous
to the coefficient of determination R2 usually used in simple
linear regression. This measure, which we denote as R2

Φ, is
defined as

R2
Φ = 1− E2

Φ(αxd + β)

E2
Φ(m̂)

, (2)

where m̂ is the solution to (1) for a constant RTT xt = m̂.
Hence, E2

Φ(β̂) ∈ (0, 1) represents the natural variability
around the median RTT, irrespective of geodesic distance.
Then, R2

Φ represents the proportion of variability in the
median that is accounted for by the median least squares fit
xt = αxd + β. Similarly to the R2 statistic, R2

Φ = 0 implies
that the linear fit accounts for essentially no variability in the
data, and R2

Φ = 1 indicates that the linear fit perfectly explains
all variability in the median RTT for each xd as embodied by
the underlying distribution Φ(xd, xt).

IV. RTT AND GREAT CIRCLE DISTANCE

A visual representation of the relationship between RTT and
great circle as revealed by Φ(xd, xt) is shown as a greyscale
map in Fig. 4a, where pixel shading is proportional to the
logarithm of the number of observations in the dataset for
each (Xd, Xt) bin. As previously reported [18], [11], [22], we
find a strong linear association between RTT and geolocation
distance. This has been confirmed not only using PlanetLab
[2], but also by the CAIDA macroscopic topology probing
project [12]. However, as clearly visible in Fig. 5 of [18],
Fig. 1 of [22] and Fig. 4a in this paper, Φ(xd, xt) also
exhibits significant deviations from purely linear behaviour.
We now show that these deviations arise due to large-scale

routing behaviours between subcontinental zones. To this
end, we introduce the subcontinental zone pair Xz of each
measurement as an additional variable in Φ(x), and analyse
the spatial properties of Φ(xd, xt, xz) by considering the
relationships between distance and RTT for each one of the
66 sub-components that arise between pairs of subcontinental
zones Xz in Table I.

We proceed by isolating each subcontinental component
Φ(xd, xt, xz) for a given xz and fitting a least squares median
line xt = αzxd + βz to each one. To achieve this, we take
the optimisation problem (1), discretise it, and solve it using
a standard simplex search numerical optimisation technique
[31]. We present some examples of these components in
Fig. 3, along with their calculated least squares median lines
and their goodness of fit measures R2

Φ. At first glance, we
note that although some components display strong linear
behaviour (e.g. Figs. 3aand 3c), some exhibit very poor fit
to a linear median model (e.g. Fig. 3b), suggesting that no
underlying regularities are present. However, if we consider
the proportion of measurements present on each component
(and hence the number of measurement servers in the zones
being considered), a significant pattern arises. First, in Fig.
2a we see that components accounting for ∼89% of all
measurements have values of R2

Φ of .62 or higher, thus
suggesting that most measurements come from components
with strong linear behaviour. Furthermore, in Fig. 2b we see
that most measurements belong to components whose least
squares median slope αk is close to either +.017 or -.017.

(a) Empirical R2
Φ CDF and PDF. ∆ ≈ .01.

(b) Empirical PDF of α and 2-component GMM fitting. ∆ ≈ .0015.

Fig. 2: Least-square median line slopes αz and R2
Φ for all 66

subcontinental zone components ΦS(d,t,z). In both graphs, a
histogram bin width of 2∆ was used.

The fact that the αz gave rise to a pair of symmetrically
positioned distributions suggests that |αz| may be strongly
influenced by the same underlying process for every Xz , with
the most important distinction between components being its
sign. To explain the sign of αz , we propose a simplified model
of routing in which communication between subcontinental
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zones takes place through a single route which may deviate
significantly from the relevant geodesic. Although this illus-
trative model is not realistic, it captures essential intuitions
useful to develop techniques which can then be falsified using
real Internet measurements.

Consider two subcontinental zones Z and Z ′, diagrammat-
ically represented by circles in Figs. 3d, 3e and 3f. For our
simplified one-link model, we posit that the sign of αz will
depend on the geographic relationship between the points at
which the link connects the two zones. Consider two pairs of
nodes [a, a′] and [b, b′], where [a, a′] denotes the two closest
nodes in geodesic distance, and [b, b′] represents the two most
further away. We now consider three different alternatives with
respect to the position of the inter-zone route. In Fig. 3d
we present the case in which the route between both zones
connects them through points which are close in geodesic
distance. Then, a [a, a′] will experience low RTT, and [b, b′]
will experience high RTT. In this case, RTT will increase with
great circle distance (as happens with Fig. 3a). ). Consider
now a situation like that presented in Fig. 3e. In that case,
we see that although there may be significant differences in
great circle distance between [a, a′] and [b, b′], their RTTs
are very similar, and the result is an αz ≈ 0, such as that
presented in Fig. 3b. Finally, we consider a situation like that
presented in Fig. 3f. In this case, we see that [a, a′] will
experience high RTT due to its increased routing distance,
and [b, b′] will experience low RTT. This pattern will lead to a
general decrease of RTT with geolocation distance, and hence
to a negative αz such as presented in Fig. 3c. One particular
way in which this can arise in practice is if the route taken
reaches the destination zone by wrapping around the globe.
As an illustrative example of how this might arise, consider
a pair of nearly antipodal points which take a data path 180
degrees from the great circle arc direction. The path length is
almost the same because the points are antipodes but a move
which reduces the great circle distance increases the data path
distance.

Of course, the question remains of what happens in the
more realistic case in which there is more than a single link
connecting the two zones. Then, each link will contribute
its own RTT\distance profile, depending on which hosts use
which links to reach the remote zone. Although this can lead
to relatively simple behaviour such as that presented in Fig.
3b, it can also lead to more complex behaviours. However,
as visible in Figs. 2a and 2b, for those zone pairs that have
strong effects on the overall RTT\distance behaviour of the
Internet, we find strongly linear behaviours of the types found
in Figs. 3d and 3f. Hence, although actual routing behaviour
is much more complex, we can approximate the Internet-
scale relationship between RTT and distance by assuming that
there is a single main large-scale geographic route connecting
these most influential pairs of subcontinental zones. This will
provide a simple algorithm to recover the geographic routing
distance between them.

GMM Element Weight Mean Variance
Increasing (CI ) 0.1544 -0.0143 3.129x10−5

Decreasing (CD) 0.8456 0.0199 1.841x10−5

TABLE II: Gaussian Mixture Model parameters for αz

A. Estimating the Excess Routing Distance

We now propose a mechanism to recover the routing dis-
tance excess beyond the great circle that packets traverse when
routed between specific pairs of subcontinental zones. To this
end, we introduce a model which captures (and corrects) the
fact that, in many cases, when points move closer along a great
circle, the RTT increases. This is done using the equivalent
of an unfolding on the globe. Taking Fig. 2b as a starting
point, an explanatory model could create two sets of RTT
measurements, one with best fit gradient αF and one with
−αF . This is suggested by Fig. 2, which shows that the dataset
can be roughly decomposed in two sets with opposite signs
but roughly the same absolute magnitude for their expected
α. Let SI be the set of components Xz associated with
increasing (positive) slopes, and SD the set of components
Xz associated with decreasing (negative) slopes. In order
to assign each component to each one of these sets, we
performed a Gaussian Mixture Model fit with two components
to the experimental αz using Bregman soft clustering [13].
The two resulting Gaussian components CI and CD are
shown in 2b, and their associated parameters are shown in
Table II. Given the weights for each Gaussian component, we
assigned components Φ(xz, xt, xd) to either an increasing or
a decreasing set, so that the ratio in their probability mass
was as close as possible to that between the weights of GMM
components CI and CD. This allowed us to robustly identify
each component Φ(xz, xt, xd) with either a positive αF (for
those in the increasing set) or a negative one (for those in
the decreasing set). The decreasing set resulting from this
assignment is shown in Table III.

To accurately estimate the value of αF , we create a density
ΦI(xt, xd) that only contains those components associated
with SI . We then perform a least-squares median line fit for
this density, obtaining a slope αF = 0.0164, an intercept
βF = 22.053 ms and a goodness of fit R2

Φ = .937. Then,
we assign a slope of −αF to those components in SD, and
use a restricted formulation of (1) to find an optimal fit to the
marginal density ΦD(xd, xt, xz) where only the intercept β′z
is optimised. This allows us to associate the set SI with a best
approximation xt = αFxd + βF henceforth called the main
line, and each element Xz ∈ SD with a best approximation
xt = −αFxd +β′z henceforth called the reflection line. These
two are shown in Figs. 3c, along with the unrestricted best-fit
median line xt = αzxd + βz .

For each Xz ∈ SD, we find the intersection point P ∗ =
(X∗d , X

∗
t ) between its reflection line and the main line (see

Fig. 3c). Once P ∗ has been found, the density ΦD(xd, xt, xz)
is reflected through the great circle distance X∗d ; that is, its
great circle distance values are Xd mapped to a new large-
scale routing distance value Dz so that

Dz = 2X∗d −Xd. (3)



6

(a) Distance-RTT component between
North America (North) and S. A. (East)

(b) Distance-RTT component between the
Indian Subcontinent and N. A. (North)

P ∗

(c) Distance-RTT component between
Asia Pacific and Eastern Europe

  

(d) One-link model for αz > 0
  

(e) One-link model for αz ≈ 0
  

(f) One-link model for αz < 0

Fig. 3: RTT\distance behaviour for 6 Xz example components, along with their respective one-link models

This operation allows us to calculate the appropriate routing
distance such that the behaviour of the densities in SD best
matches the behaviour of those in SI . The intuitive meaning
of this procedure can be seen in Fig. 3f: from the point of view
of geodesic distance, the path taken by traffic from a to a′ is
folded, and can be transformed to resemble the path in Fig.
3d by reflecting each circle over the Xd axis and increasing
the distance between them so that the total length of the link
is preserved. Hence, (3) essentially unfolds the routing path
so that distance along the path can be directly compared to an
increasing (positive slope) path like that of Fig. 3d.

It may be noted that, since the reflection procedure was
made on the basis of whole subcontinental zones rather than
smaller routing units, there is some degree of noise introduced
by the procedure. In particular, the “superluminal” density
components in Fig. 4b (those that lie below the line marked
as speed of light in vacuum) are artifacts of the reflection
procedure that correspond to routes between Eastern Europe
and Asia Pacific that follow a path which more closely
resembles the geodesic. In fact, these components can be seen
on Fig. 3c around the main line defined from SI . Although
this noise decreases the quality of the resulting density, its
probability mass is small, and its effect is limited.

The outcome of the unfolding procedure is shown in Fig. 4,
along with its least squares median fit, which has a slope αU

≈ 0.016 km/ms and an intercept βU ≈ 22 ms. As indicated
by its R2

Φ, this fit explains ∼94% of the variability in median
RTT as a function of routing distance, and hence constitutes
a very accurate description of the structure of Φ(x).

V. CIRCUITOUSNESS OF INTERNET ROUTING

To better understand the effects of the unfolding procedure,
we define two measures. The first one is the large-scale routing
distance excess σ, defined as

σ(Xz) = Dz −Xd = 2 (X∗d −Xd) ,

which gives an estimate for the additional distance beyond the
geodesic that a packet traverses when it is routed between two
subcontinental zones Xz ∈ SD. The second measure, the total
distance ratio ρ, is defined as the ratio between the distance
that a packet could have traversed in half an RTT moving
at a speed v = .65c, and the actual geodesic distance that is
associated with that RTT in the least-squares median fit shown
in Fig. 4b. Formally,

ρ(Xz) =

(
.65c

2

)[
αU (1 +

σ(Xz)

Xd
) +

βU
Xd

]
, (4)

where σ(Xz) ≡ 0 if Xz ∈ SI and .65c approximates the
speed of light in optical fibre. The values for σ and ρ for all
Xz ∈ SD are shown in Table III. The rationale behind these
definitions for ρ and σ is that they quantify path circuitousness,
the degree to which routing paths deviate from geodesic paths.
However, whereas σ quantifies large-scale deviations at the
subcontinental scale, ρ directly quantifies the intuition that
Internet RTTs increase with distance significantly faster than
what would be expected from propagation delay alone if they
followed geodesic paths. A further benefit of these measures
is to provide a tool to evaluate whether direct corroborating
evidence of the values in Table III can be found in the current
Internet. We address ρ first, then moving on to σ.
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(a) Original ΦS(d,t)

(b) Unfolded ΦS(r,t)

Fig. 4: Relationship between RTT and distance

Most work addressing path circuitousness has required the
explicit calculation of routing paths, normally using geolocated
traceroute probes. Hence, most previous work has relied on
C, the ratio between explicit routing path length and geodesic
distance, as a circuitousness measure. Since we do not have
full path length measures, we limit ourselves to qualitative
comparisons between C and ρ. Kasiviswanathan et. al. [21]
present evidence of very large values of C ≈ 10 within the
USA, with traffic crisscrossing between the East and West
coasts. Although Subramanian et. al. [33] also find instances
of large C within the USA, they show that it tends towards 1
for longer paths. However, since their dataset focused on the
USA and Europe, their conclusions apply primarily between
these zones. In [28], Mátray et. al. show that, for flows between
Europe, the USA and the Asia Pacific regions, values of C ≥ 3
are only frequent for geographic path lengths under 2000 km;
for longer paths, they report 1 ≤ C ≤ 2. Only connections
between Europe and Asia Pacific experience C > 1.5.

Zone 1 Zone 2 σ (km) ρ
Asia Pacific Western Europe 7,410 3.08
Asia Pacific Eastern Europe 9,796 3.7

Oceania Western Europe 2,702 1.98
S. A. (East) Asia Pacific 973 1.79
Asia Pacific Central Asia/Middle East 11,348 3.94

Oceania Eastern Europe 5,685 2.33
Asia Pacific Indian Subcontinent 4,110 3.14

Oceania Central Asia/Middle East 7,623 2.57
Africa Oceania 18,973 4.53

S. A. (East) South America (West) 7,187 4.77
Oceania South America (West) 3,608 2.15
Africa South America (West) 11,208 3.41

TABLE III: Large-scale circuitousness measures

By construction, (4) will have lower values for higher values
of Xd; this is consistent with the properties of C reported in
[21], [33], [28]. For traffic between North America (North)
and Western Europe, (4) gives a value of ρ ≈ 1.8, which is
higher than the reported C ≈ 1 because it includes effects such
as store-and-forward, processing and queuing delays which
are not directly attributable to geographic routing length.
For traffic between Europe and Asia Pacific, (4) predicts
higher values of ρ due to increased routing excess σ; this
is in agreement with [28]. One important difference between
our results and those of [33] is that, because of the higher
geographical heterogeneity of our dataset, we could document
many more instances of large-scale routing inefficiency.

We now move on to the evaluation of evidence for the
found values of σ. The methodology that we followed was
to perform a small number of geolocated traceroute measure-
ments between hosts in the relevant areas, and use them to
reconstruct the geographical routes taken by the packets. This
was achieved by making use of public traceroute resources
such as [9]. From this, we obtained representative values of σ
that could be compared with those presented in Table III.

Although we found evidence of some traffic between East-
ern/Western Europe and Asia Pacific being routed through
the USA, implying routing distances Dz of ∼19,000 km,
we also found evidence of much shorter routes using the
TEA/CR2 China Telecom optical cable system [3], yielding
Dz of ∼11,000 km. Although for Eastern Europe the observed
value of σ ≈ 9,796 km is close to the σ ≈ 10,000 km expected
from transit through the USA, the observed σ of 7,410 for
Western Europe is too low to consider a situation where all
traffic follows this route. However, the combined effect of
transit traffic through the USA and through continental Asia
via [3] might explain the lower observed σ.

In the case of traffic between Oceania and Western Europe,
geodesic distances vary widely, spanning from ∼17,000 km to
∼19,000 km even if we only consider the highest population
centres such as Eastern Australia and New Zealand. We found
evidence of traffic between these zones going through the
USA and crossing the Pacific through southern California. This
results on routing distances Dz ranging between ∼20,000 km
and ∼22,000 km. This implies a σ that varies between ∼1,000
km and ∼5,000 km, which is in broad statistical agreement
with the observed value of σ ≈ 2,702 km. For traffic between
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Eastern Europe and Oceania, we found evidence of routing
via Western Europe, which imposes an additional ∼3,000 km
of routing distance and leads to distance excess σ of ∼5,702
km. This is consistent with the observed σ ≈ 5,685 km.

With regards to traffic between the Asia Pacific and South
America (East) zones, we found evidence of routing paths
using the various cable systems crossing the Caribbean [7],
entering the USA via Miami and then being routed to the
Asia Pacific region through the southern USA. This leads to a
geodesic routing distance of ∼19,000 km and a σ ≈ 1000 km,
consistent with the low observed σ of ∼973 km. Conversely,
we also confirmed the high σ between the Asia Pacific and
the Central Asia / Middle East zones. In this case, we found
evidence of traffic being routed across the USA and continental
Europe, leading to a routed distance Dz of ∼21,000 km and
a σ ≈ 12,000 km, which is compatible with the observed
value of ∼11,348 km. Similarly, we found evidence of traffic
between Oceania and Central Asia following routes through
the USA and Canada, imposing a Dz in the order of ∼23,000
km and an excess distance of ∼8,400 km in broad statistical
agreement with the observed value of ∼7,623 km.

Although we found evidence of very large RTTs between
the Indian subcontinent and Asia Pacific zones due to routing
through the USA, this was relatively unusual. More commonly,
we found evidence of routing through both Mumbai and
Singapore, which is indicative of the use of undersea cables
like the SeaMeWe-3 or FEA [7]. This route through the Bay
of Bengal and the China seas has an approximate length of
∼9000 km, which would imply a σ of ∼4000 km and is hence
compatible with the observed value of ∼4,100 km for σ.

Due to the size of the African continent, traffic between
itself and Oceania follows very diverse routes. We found
evidence of traffic from Australia to West Africa being routed
through the USA, London, and then Africa via Portugal,
suggesting that infrastructure such as the West African Cable
System (WACS) was used; for destinations in East Africa, we
found evidence of traffic being routed through the Mediter-
ranean [7]. Routes also exhibited increased variability in the
Asia Pacific Region, sometimes passing through intermediate
points (e.g. Tokyo) before being routed to the USA. Regarding
the values of σ observed, they ranged from ∼6,000 km to
∼24,000 km depending on the specific sources and desti-
nations, with values around ∼15,000 being more common.
These values are statistically consistent with the observed σ ≈
18,973 km, but further subdivision of Africa may be required
to achieve more precise σ estimates.

Regarding traffic between South America (East) and South
America (West), we found evidence that, possibly due to the
presence of the Andes and the Amazon, traffic between these
regions frequently travels to the USA and back, imposing very
large worst-case routing distances. This usually happens by
following the South American coast northward and reaching
the USA through the Caribbean (crossing through the Panama
Canal if necessary). For the areas with greater population
densities, σ ≈ 7500 km. This is consistent with its observed
value of ∼7,187 km. This same routing through the USA is

responsible for the increased routing delay between Oceania
and South America (West). In this case, we found evidence
for a routing distance ∼19,000 km and a σ ≈ 4,000, which is
in agreement with the observed value of ∼3,608 km.

As was the case with Oceania, traffic between South
America (East) and Africa follows very diverse routes. In
general, we found that flows were routed through the USA
and Europe.If we consider traffic from the most populated
areas in South America (East) on the Atlantic, we found values
of σ ranging from ∼3,000 km to ∼12,000 km depending on
the specific sources and destinations. Conversely, for highly
populated areas in the Pacific, we found values of σ ranging
from ∼6,000 km to ∼14,000 km. Overall, although these
values do not seem to far from the observed value of ∼11,208
km, their dispersion indicates that further subdivision of Africa
may be of interest for future work.

VI. RELATED WORK

Many contributions have focused their attention on the
scalable estimation of RTT, particularly in the context of
specific applications (e.g. anycast services [18], [30] and
content delivery overlays [11], [34]). A representative example
of these efforts is Vivaldi [15], that embeds RTT measurements
between end hosts in a coordinate model of the Internet delay
space. The distance in this coordinate space is then used as
an estimate of the RTT. Another example of a practical RTT
estimation system is iPlane [26], that uses measurements to
create an “atlas” of the Internet clustered on the basis of BGP
atoms [14] (minimal elements experiencing equivalent routing
paths). Given two end points, iPlane estimates an abstract view
of the route that traffic will take between them. A database is
collated and SQL-like queries are used to obtain data for a
given pair of end hosts. iPlane NANO [27] is a “summarised”
version of iPlane that requires smaller daily updates.

Other works have focused on the development of more
accurate RTT models. In [22] Kaune et. al propose a scalable
model to predict RTT that includes realistic delay jitter subject
to the geographical positions of the sender and the receiver.
Another example is [35], in which Zhang et. al. propose an
RTT model that better preserves continental clustering and
RTT triangle inequality variations (TIVs). [25].

An improved modelling of the relationship between RTT
and geographic Internet properties has been at the heart of
many works in network-centred host geolocation. In [16] Dong
et. al. propose a model of the relationship between RTT and
geographic distances using segmented polynomial regression
and semidefinite programming. This system builds on the
multilateration approach presented in [19], which transforms
RTT measurements into geographic distance constraints to
infer the location of Internet hosts.

Finally, there have been several efforts to map the geography
of Internet resources. The seminal work of Lakhina et. al.
[23] mapped routers to their geographical locations using both
geolocation registries and DNS-based host naming heuristics.
The authors presented an analysis of interface density across
regions, with particular emphasis to its relationship with
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population density. In addition, they study the relationships
between geographic distance and link density, and between the
size and geographic extent of ASes. A more recent example
is [21], where Kasiviswanathan et. al. investigate routing cir-
cuitousness, and show that more than 50% traffic volume has
distance ratio higher than 2, and about 20% traffic volume has
distance ratio higher than 4. Since they restrict their analysis
to the U.S.A., this manifests as traffic taking long, bouncing
detours between the East and West coasts before reaching its
destination. A conceptually similar work is [28], in which
Mátray et. al. present an analysis of the geography of routing
paths. The authors present a frequency analysis of link lengths,
quantify path circuitousness and explore the symmetry of end-
to-end Internet routes. Although their dataset is significantly
different from ours (traceroute probes from PlanetLab [2]
nodes), their conclusions regarding route circuitousness are in
line with our results.

VII. CONCLUSION

In this paper we presented a model for the large-scale
analysis of RTT and geolocations distance based on a novel
RTT dataset comprising ∼19 million measurements between
∼54 thousand measurement points. This model, although very
simple, can account for∼94% of the variability in median RTT
for a given geolocation distance.

We approached the modelling of RTT by treating our
measurements as realisations of a multidimensional random
variable, whose distribution Φ(x) we estimated by construct-
ing a two-dimensional histogram. Our main contribution was
a procedure for the geographic analysis of Φ(x) that allows
the recovery of large-scale routing information. We achieved
this by dividing Φ(x) into components Xz on the basis of
subcontinental zones. By applying a novel median-based linear
fitting algorithm to each component, we synthesised a large-
scale routing excess σ that quantifies the extra distance beyond
the geodesic that packets traverse when flowing between the
relevant subcontinental zones. This procedure can then be used
to build a linear model for Internet RTT that, albeit very
simple, is accurate and can be used to aid in the modelling
and design of distributed systems.

This research has received funding from the Seventh Frame-
work Programme (FP7/2007-2013) of the European Union,
through the ENVISION project (grant agreement 248565).
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